Direct Jet Measurements in p-p and Cu+Cu Collisions by the PHENIX Experimenent

RHIC-ACS Users Meeting
June 5, 2009

Brian A. Cole for the THENIX Collaboration

Not an officially sanctioned PHENIX talk

Jet Probes of the Quark Gluon Plasma

- High-p_T quarks and gluons are valuable probe of QGP
 - Can be separated from final-state "mess".
 - Directly interact with the medium.
 - ⇒Probe color-charge density in medium
 - Medium response probes QGP properties
 - Production rate(almost) calculable
 - ⇒"Calibrate-able"

(GLV) Diagram for medium induced gluon radiation

"Jet" Quenching at RHIC

Single hadron but not y suppression

di-jet disappearance via di-hadron Δφ correlations

- RHIC results have clearly established "jet quenching" as an experimental fact
 - -By using single, di, tri-hadrons
 - -But, where are the jets?
 - ⇒Until recently: too hard in soft background

PHENIX: Di-jet Suppression, Updated

Detailed test of di-jet differential quenching.

Problem with relying on hadrons

Energy loss bias

- Hadrons biased to jets that lose the least energy
 - ⇒ geometry
 - ⇒ radiation fluctuations

Averaging

- Hadron measurements average over jet energies
 - ⇒ Indirect measurement of jet quenching

Rates

Suffer from steep fragmentation function

Wicks et al (GLV + collisional)

PHENIX: A+A Optimized Jet Reconstruction

- 3 years ago PHENIX started investigating approaches to full jet reconstruction in A+A
- Considerations:
 - Flat angular weight of cone algorithms
 - ⇒Non-optimal signal/background
 - ⇒Small cones susceptible to bkgd fluctuations
 - Limited angular coverage of PHENIX
 - **⇒**Control of edge effects
 - Initial studies of k_T algorithm
 - ⇒Jet shape sensitive to background
- Which led us to a new approach:
 - Cone-like algorithm but with angular weight
 - ⇒Implementation naturally seedless, (analytically) collinear, infrared safe.

PHENIX: Gaussian Filter

Shamelessly borrowed from Y. Lai, QM2009 talk

$$\iint_{\mathbb{R}\times S^1} d\eta' d\phi' p_T(\eta',\phi') \exp\left[-\frac{(\eta-\eta')^2+(\phi-\phi')^2}{2\sigma^2}\right] = \text{max!}$$

- Stabilizes the jet axis in the presence of background
- Naturally handles isolated particles vs. collective background

Y. Lai, BAC, arXiv:0806.1499

Gaussian Filtering: Demonstration

$$E_T^{filt}(\eta_0,\phi_0) = \int\!\int\!d\phi d\eta\, rac{d^2E_T}{d\eta d\phi}\,e^{-ig((\eta-\eta_0)^2+(\phi-\phi_0)ig)/2\sigma^2}$$

- Example event
 - -200 GeV p-p
- •Lego plot of E_T $\Delta \eta \Delta \phi = 0.1 \times 0.1$
 - Charged + EM
- Plot E_T^{filt} vs ϕ_0 at $\eta = 0$.
 - -Clearly visible maximum
 - ⇒Jet

Gaussian Filtering: Demonstration

$$E_T^{filt}(\eta_0,\phi_0) = \int\!\int\!d\phi d\eta\, rac{d^2E_T}{d\eta d\phi}\, e^{-ig((\eta-\eta_0)^2+(\phi-\phi_0)ig)/2\sigma^2}$$

- Example event
 - -200 GeV p-p
- •Lego plot of E_T $\Delta \eta \Delta \phi = 0.1 \times 0.1$
 - Charged + EM
- Plot E_T^{filt} vs ϕ_0 at $\eta = 0$.
 - -Clearly visible maximum
 - ⇒Jet

PHENIX: p-p Jet Reconstruction

Di-jet event

Split jet (NLO/parton shower) event

PHENIX p-p: Detector Response

Losses primarily from K_L, neutron

But also edges and "holes"

- From 16 Million Pythia+GEANT simulated events
 - Complete transfer matrix used for unfolding spectrum

PHENIX Corrected p-p spectrum

Grey band: systematic normalization uncertainty

Blue boxes: systematic errors due unfolding, "acceptance"

- Spectrum unfolded for detector response
 - With Guru Singular Value Decomposition code (NIM A372:469-481,1996)
 - ⇒ Also Used by (e.g.) D0

PHENIX, STAR Spectrum Comparison

- Beware: "apples to oranges" comparison
 - ⇒Different jet algorithms ⇒ different cross-section
 - ⇒But, narrow jets @ high p_T ⇒ (how?) small difference

PHENIX p-p spectrum, pQCD comparison

- Pythia LO K value only a guess
- Vogelsang SCA (Small cone approx.) apples-andoranges comparison
 - ⇒Need real NLO pQCD calculation for filter

Cu+Cu Event Display

- Event display of two Cu+Cu events
 - Di-jet event
 - Single-jet event, other outside acceptance (?)

PHENIX: Fake Jet Rejection

- Fake jets potentially serious problem
 - Especially with correlated background fluctuations
- Reject background with jet "shape" cut

$$g_{\sigma_{\mathsf{dis}}}(\eta,\varphi) = \sum_{i \in \mathsf{fragment}} p_{T,i}^2 \exp\left[-\frac{(\eta_i - \eta)^2 + (\varphi_i - \varphi)^2}{2\sigma_{\mathsf{dis}}^2}\right],$$

 $\sigma_{dis} = 0.1$

PHENIX: Fake Rejection (2)

Cu+Cu di-jet Δφ distribution prior to fake rejection

Increasing rejection

Increasing rejection

~ Entirely combinatoric pairs due to fake jets

PHENIX Cu-Cu Performance

 Event-averaged background folded w/ filter subtracted during jet finding process

$$E_T^{filt}(\eta_0, \phi_0) = \int \int d\phi d\eta \, \frac{d^2 E_T}{d\eta d\phi} \, e^{-((\eta - \eta_0)^2 + (\phi - \phi_0))/2\sigma^2} - B(\eta_0, \phi_0, N_{part})$$

 Cu+Cu performance (including fake rejection) by embedding p-p events into Cu+Cu events

PHENIX: Cu-Cu ⇔ p-p Comparison

- Evaluate Cu-Cu, p-p comparison (and R_{AA}) using two different methods:
 - -Method #1
 - ⇒Unfold Cu-Cu data for background smearing
 - **⇒**Correct for inefficiencies
 - ⇒Compare to p-p data at p-p reconstructed energy scale
 - -Method #2
 - ⇒DO NOT unfold Cu+Cu for background.
 - ⇒Evaluate "smeared" p-p spectrum from embedding analysis w/ correct normalization.
 - ⇒Compare Cu-Cu to smeared p-p
 - Valuable test of systematics in unfolding

Unfolded Cu-Cu Spectra

Unfolded Cu+Cu RAA

- Three systematic errors quoted
 - Normalization (mostly p-p, Cu-Cu relative E scale)
 - Centrality dependent (unfolding vs embedding)
 - Bin-by-bin unfolding systematic error

Cu-Cu, Embedded p-p Comparison

Unfolding / Embedding RAA Comparison

Beware: Unfolding and embedded have different p_T scales (OK if R_{AA} ~ flat)

Good agreement between two different methods

Cu+Cu Jet, π⁰ R_{AA} Comparison

Beware:

π⁰ R_{AA}

shown at

π⁰ p_T scale

⟨z⟩ ~ 0.7

- Jet RAA comparable to π^0 RAA.
 - Only partial overlap in normalization syst. err.

Cu+Cu Di-jet Δφ Distribution

Cu+Cu Di-jet Δφ Distribution (2)

Centrality	$\Delta \varphi \approx \pi \text{ width } \sigma$
0-20%	0.223 ± 0.017
20-40%	0.231 ± 0.016
40-60%	0.260 ± 0.059
60-80%	0.253 ± 0.055

- No apparent broadening of di-jet Δφ distribution between peripheral and central Cu+Cu
 - Consistent with substantial suppression?

Summary

- First PHENIX measurement of jet cross-section in proton-proton collisions @ 200 GeV/c.
- Measurement of Cu+Cu jet spectra, RAA
 - Using two different procedures. Good agreement.
 - Jet RAA shows significant jet "suppression".
- Measurement of Cu+Cu di-jet Δφ distribution
 - No apparent broadening, change in $\Delta \phi$ width
- R_{AA} and Δφ results suggest we are not "seeing" quenched jets
 - Due to algorithm, "Out of cone radiation", collisional energy loss, other? We don't know
- It's still early in A+A jet measurement program, beware over-interpreting results ...

PHENIX: To-do

- We expect to soon have for Cu+Cu:
 - Fragmentation functions, hadron J_T distributions, di-jet E_T balance, absolutely normalized Δφ
 - ⇒Working on the (2-dimensional) unfolding
- Clearly a very high priority is performing
 Cu+Cu measurement w/ different Gaussian σ.
 - But, we have another approach to angular weight too.
- In p-p test our understanding of jet energy scale
 - Use techniques from CDF/D0 (e.g.)
 - ⇒di-jet balance to check Monte-Carlo
 - ⇒γ-jet to calibrate jet energy scale
- Apply to Au+Au (more high-energy data!)
- Use full jets + hadrons for medium response.
- Use another algorithm (anti-k_T?), first in Cu+Cu

Thoughts / My perspective (2)

- I am pinning all my hopes on progress in understanding jet quenching on full jet measurements
 - 1. For physics reasons (above and below)
 - 2. Sociological reasons
 - ➡ Break the field out of the "rut" we are in and force us to address the fundamental physics questions
 - → How do partons lose energy?
 - → How do they interact in medium?
 - "Where" does lost energy go?
 - \rightarrow And NOT "what is \hat{q} ?"

Thoughts / My perspective (2)

- At QM2008, I argued in so many words that we are not attacking jet quenching scientifically.
 - -But I wasn't sufficiently blunt.
 - ⇒ We are not attacking jet quenching scientifically.
 - ⇒Instead of asking the right questions and trying to answer them, we are trying to fit the physics into our chosen/preferred answers.

Thoughts / My perspective (3)

- Q#1: "How do partons lose energy?"
- Improved version: "what happens to quarks & gluons in medium?"
 - Radiative energy loss?
 - Collisional energy loss?
 - Conversion into other partons
 - Deflection in chromomagnetic fields?
 - Lost in black holes, ...
 - ⇒ Currently our answers are ~ entirely based on theoretical prejudice.
 - →I hope Jet R_{AA} + FF will provide some model-independent insight.

Thoughts / My perspective (4)

- Q#2: "How do partons interact with the medium?"
 - –Weak coupling (i.e. via 2→2, 2→3 processes + formation/interference)?
 - -Strong coupling (something else)?
 - –Non-perturbatively (via intermediate hadron-like states)?
 - ⇒We have data that indicates this is an important question to answer
 - ⇒We need a strategy to answer this question with new/better data.

Thoughts / My perspective (4)

- Q#2: "How do partons interact with the medium?"
 - –Weak coupling (i.e. via 2→2, 2→3 processes + formation/interference)?
 - -Strong coupling (something else)?
 - –Non-perturbatively (via intermediate hadron-like states)?
 - ⇒We have data that indicates this is an important question to answer
 - » We need a strategy to answer this question with new/better data.

Q#2: One (crude) attempt

From BNL seminar july 2008

Physics of jet quenching

- Crucial question:
- Does parton evolution in medium look anything like a "normal" parton shower?
- Attempt to distinguish
 - Weakly coupled radiative+ collisional energy loss
 - Strongly coupled/nonperturbative quenching
- Hard to tell looking only at hadrons
 - Need to see jet (or not!)

Thoughts / My perspective (5)

Suppose we conclude based on experimental evidence that the physics of quenching is weakly coupled:

- Q#2.5: Is original Gyulassy-Wang model on which all subsequent calculations rely correct?
- Q#2.5.5 If so, which is the right limit?
 - -Thick medium (BDMPS)
 - -Thin medium (opacity expansion)
 - -In-between (?)
 - ⇒Should be decided on basis of empirical evidence not prejudice

Thoughts / My perspective (6)

Suppose quenching is weakly coupled and the thick-medium limit applies

- Is AMY analysis of formation lengths correct?
- Can parton energy loss really be treated separately from fragmentation?
 - -Or is evolution of FF in the medium the right/only way?
- •etc...
- My opinion:
 - -much of what we should be doing here is formulating such questions and laying out a path to answering them.

Back to PHENIX

- PHENIX will continue to develop:
 - -Full jet measurments
 - ⇒And full set of correlations with other observables.
 - -(direct) gamma-hadron / gamma-jet
 - -v₂ at high p_T
- With upgrades
 - Jets (via tracking) with VTX
 - $\Rightarrow |\eta| < 1.2$
 - Charm (D) and bottom at high p_T
 - High-p_T photons, π^0 in larger acceptance
 - \Rightarrow ~2 < $|\eta|$ < ~3 with $\Delta \phi$ = 2π

Backup

p-p, Triggered vs Min-bias Comparison

- Above p-p data from Level-1 4x4 tower trigger
- Here we show comparison with min-bias trigger.

Agreement within <~ 10%

p-p: Acceptance Systematics

- How well does PHENIX have edge effects under control?
- For all above results, apply fiducial cut
 - Jet 0.05 awayfrom edge
- Suppose we tighten cut
 - Jet 0.15 awayfrom edge
- Re-do analysis
 - Consistentwithin 15 20%

Fake Jet Rejection: Bias?

- Obvious question:
 - Doesn't fake jet rejection bias jet sample?
- Answer:
 - -Potentially, yes.
 - ⇒But, better to measure R_{AA} for jets we know how to find (w/ vacuum-like parton shower, than introduce systematics from fake jets.
 - » If we see suppression, we have learned something important already
 - And, as we have shown, fake rejection has small effect in Cu+Cu above ~ 10-12 GeV
 - ⇒But, we expect much larger effects in Au+Au
 - ⇒Best to understand potential biases, consequences of fake jet rejection in Cu+Cu.

Recent Improved Jet Algorithms

 Recent progress in development of (practical) infrared-safe, collinear-safe jet algorithms

Cacciari, Salam, Soyez

- "No-brainer" that we should try anti-k_T and C/A with filter for comparison to Gaussian filter
 - →Impact of PHENIX acceptance needs study.

Cu-Cu Unfolding: Before/After

p-p into Cu-Cu: Embedding Response

Gaussian Filter: Jet ET Correction

- The Gaussian filter output is more like an "energy flow" variable than true jet energy.
 - But, there is a well-defined expansion that allows corrections to the Gaussian filter to be calculated.

$$\begin{split} E_T^{filt}(\eta_0,\phi_0) &= \int \int d\phi d\eta \, \frac{d^2 E_T}{d\eta d\phi} = \int \int d\phi d\eta \, \frac{d^2 E_T}{d\eta d\phi} e^{-R^2/2\sigma^2} e^{+R^2/2\sigma^2} \\ &= \int \int d\phi d\eta \, \frac{d^2 E_T}{d\eta d\phi} e^{-R^2/2\sigma^2} (1 + \frac{R^2}{2\sigma^2} + \frac{R^4}{8\sigma^4} + \ldots) \\ &= \int \int d\phi d\eta \, \frac{d^2 E_T}{d\eta d\phi} e^{-R^2/2\sigma^2} + \int \int d\phi d\eta \, \frac{d^2 E_T}{d\eta d\phi} \frac{R^2}{2\sigma^2} e^{-R^2/2\sigma^2} + \ldots \\ &\equiv p_T^0 + p_T^1 + p_T^2 + \ldots \end{split}$$

- Gaussian filter is just the first term in this expansion.
- Evaluate the second term to assess how much the filter is distorting the jet energy measurement.

Gaussian Filter: Jet ET Correction (2)

Gaussian Filter: Jet ET Correction (3)

