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Jet Probes of  the Quark Gluon Plasma

•High-pT quarks and 
gluons are valuable 
probe of  QGP
– Can be separated from 

final-state “mess”.

– Directly interact with 
the medium.
⇒Probe color-charge 

density in medium

– Medium response 
probes QGP properties

– Production rate  
(almost) calculable 
⇒“Calibrate-able”
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(GLV) Diagram for medium 
induced gluon radiation



“Jet” Quenching at RHIC

•RHIC results have clearly established “jet 
quenching” as an experimental fact 
–By using single, di, tri-hadrons
–But, where are the jets? 
⇒Until recently: too hard in soft background
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Single hadron but not γ 
suppression 

di-jet disappearance via 
di-hadron Δϕ correlations



PHENIX: Di-jet Suppression, Updated

• Detailed test of  di-jet differential quenching. 4



Problem with relying on hadrons
•Energy loss bias 

– Hadrons biased to jets 
that lose the least energy
⇒ geometry 
⇒ radiation fluctuations

•Averaging
– Hadron measurements  

average over jet energies 
⇒ Indirect measurement 

of  jet quenching

•Rates
– Suffer from steep 

fragmentation function

   ⇒ USE FULL JETS! 5

Wicks et al (GLV + collisional)



PHENIX: A+A Optimized Jet Reconstruction 

• ~ 3 years ago PHENIX started investigating 
approaches to full jet reconstruction in A+A

• Considerations:
–  Flat angular weight of  cone algorithms 
⇒Non-optimal signal/background
⇒Small cones susceptible to bkgd fluctuations

– Limited angular coverage of  PHENIX
⇒Control of  edge effects

– Initial studies of  kT algorithm 
⇒Jet shape sensitive to background

• Which led us to a new approach:
– Cone-like algorithm but with angular weight
⇒Implementation naturally seedless, (analytically) 

collinear , infrared safe.
6



PHENIX: Gaussian Filter
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Shamelessly borrowed from Y. Lai, QM2009 talk

Y. Lai, BAC, arXiv:0806.1499



Efilt
T η0, φ0 dφdη d2ET

dηdφ
e η η0

2 φ φ0 2σ2

Gaussian Filtering: Demonstration

•Example event

–200 GeV p-p 

•Lego plot of  ET 
ΔηΔφ = 0.1x0.1 

– Charged + EM

•Plot ET
filt vs ϕ0 

at η = 0.

–Clearly visible 
maximum
⇒Jet
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Gaussian Filtering: Demonstration

•Example event

–200 GeV p-p 

•Lego plot of  ET 
ΔηΔφ = 0.1x0.1 

– Charged + EM

•Plot ET
filt vs ϕ0 

at η = 0.

–Clearly visible 
maximum
⇒Jet
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PHENIX: p-p Jet Reconstruction

9

Di-jet event Split jet (NLO/parton 
shower) event



PHENIX p-p: Detector Response

• From 16 Million Pythia+GEANT simulated events
– Complete transfer matrix used for unfolding spectrum

10

Losses 
primarily 
from KL, 
neutron
 
But also 
edges and 
“holes”



PHENIX Corrected p-p spectrum

•  Spectrum unfolded for detector response 
– With Guru Singular Value Decomposition code (NIM 

A372:469-481,1996)
⇒ Also Used by (e.g.) D0 11
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PHENIX, STAR Spectrum Comparison

•  Beware: “apples to oranges” comparison
⇒Different jet algorithms ⇒ different cross-section

⇒But, narrow jets @ high pT ⇒ (how?) small difference
12
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PHENIX p-p spectrum, pQCD comparison

– Pythia LO K value only a guess 
– Vogelsang SCA (Small cone approx.) apples-and-

oranges comparison 
⇒Need real NLO pQCD calculation for filter 13
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Cu+Cu Event Display

• Event display of  two Cu+Cu events
– Di-jet event
– Single-jet event, other outside acceptance (?)
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PHENIX: Fake Jet Rejection
• Fake jets potentially serious problem

– Especially with correlated background fluctuations

• Reject background with jet “shape” cut
–                                                                                σdis = 0.1
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Accepted

Rejected



PHENIX: Fake Rejection (2)

16
~ Entirely combinatoric pairs due to fake jets

Cu+Cu di-jet Δϕ distribution prior to fake rejection

Increasing 
rejection

Increasing 
rejection



PHENIX Cu-Cu Performance
• Event-averaged background folded w/ filter 
subtracted during jet finding process

• Cu+Cu performance (including fake rejection)   
by embedding p-p events into Cu+Cu events
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PHENIX: Cu-Cu ⇔ p-p Comparison
•Evaluate Cu-Cu, p-p comparison (and RAA) 
using two different methods:
– Method #1
⇒Unfold Cu-Cu data for background smearing
⇒Correct for inefficiencies
⇒Compare to p-p data at p-p reconstructed  

energy scale

– Method #2 
⇒DO NOT unfold Cu+Cu for background.
⇒Evaluate “smeared” p-p spectrum from 

embedding analysis w/ correct normalization.
⇒Compare Cu-Cu to smeared p-p 

– Valuable test of  systematics in unfolding
18



 Unfolded Cu-Cu Spectra 
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Unfolded Cu+Cu RAA

• Three systematic errors quoted
– Normalization (mostly p-p, Cu-Cu relative E scale)
– Centrality dependent (unfolding vs embedding)
–  Bin-by-bin unfolding systematic error 20
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Cu-Cu, Embedded p-p Comparison
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Unfolding / Embedding RAA Comparison
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Cu+Cu Jet, π0 RAA Comparison

• Jet RAA comparable to π0 RAA.
– Only partial overlap in normalization syst. err.
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Cu+Cu Di-jet Δϕ Distribution
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Cu+Cu Di-jet Δϕ Distribution (2)

• No apparent broadening of  di-jet Δϕ distribution 
between peripheral and central Cu+Cu
– Consistent with substantial suppression?
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Summary
• First PHENIX measurement of  jet cross-section 
in proton-proton collisions @ 200 GeV/c.

• Measurement of  Cu+Cu jet spectra, RAA

– Using two different procedures. Good agreement.

– Jet RAA shows significant jet “suppression”.

• Measurement of  Cu+Cu di-jet Δϕ distribution

– No apparent broadening, change in Δϕ width

• RAA and Δϕ results suggest we are not “seeing” 
quenched jets

– Due to algorithm,  “Out of  cone radiation”, collisional 
energy loss, other ? We don’t know

• It’s still early in A+A jet measurement program, 
beware over-interpreting results ...
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PHENIX: To-do
•  We expect to soon have for Cu+Cu:

– Fragmentation functions, hadron JT distributions,      
di-jet ET balance, absolutely normalized Δϕ
⇒Working on the (2-dimensional) unfolding

• Clearly a very high priority is performing           
Cu+Cu measurement w/ different Gaussian σ.
– But, we have another approach to angular weight too.

• In p-p test our understanding of  jet energy scale
– Use techniques from CDF/D0 (e.g.)
⇒di-jet balance to check Monte-Carlo
⇒γ-jet to calibrate jet energy scale

• Apply to Au+Au (more high-energy data!)
• Use full jets + hadrons for medium response.
• Use another algorithm (anti-kT?), first in Cu+Cu 27



Thoughts / My perspective (2)
•I am pinning all my hopes on progress in 
understanding jet quenching on full jet 
measurements

1. For physics reasons (above and below)

2. Sociological reasons

➡ Break the field out of  the “rut” we    
are in and force us to address the 
fundamental physics questions

➡ How do partons lose energy? 

➡ How do they interact in medium?

➡ “Where” does lost energy go?

➡ And NOT “what is     ?”
28

q̂



Thoughts / My perspective (2)

•At QM2008, I argued in so many words that we 
are not attacking jet quenching scientifically.
–But I wasn’t sufficiently blunt.

⇒ We are not attacking jet 
quenching scientifically.
⇒Instead of  asking the right 

questions and trying to 
answer them, we are trying 
to fit the physics into our 
chosen/preferred answers.

29



Thoughts / My perspective (3)

•Q#1: “How do partons lose energy?”
•Improved version: “what happens to 
quarks & gluons in medium?”
– Radiative energy loss?
– Collisional energy loss?
– Conversion into other partons
– Deflection in chromomagnetic fields?
– Lost in black holes, …
⇒ Currently our answers are ~ entirely 

based on theoretical prejudice.
⇒I hope Jet RAA + FF will provide some 

model-independent insight. 30



Thoughts / My perspective (4)

•Q#2: “How do partons interact with the 
medium?”
–Weak coupling (i.e. via 2→2, 2→3 

processes + formation/interference)?
–Strong coupling (something else)?
–Non-perturbatively (via intermediate 

hadron-like states)?
⇒We have data that indicates this is 

an important question to answer
⇒We need a strategy to answer this 

question with new/better data.

31



Thoughts / My perspective (4)

•Q#2: “How do partons interact with the 
medium?”
–Weak coupling (i.e. via 2→2, 2→3 

processes + formation/interference)?
–Strong coupling (something else)?
–Non-perturbatively (via intermediate 

hadron-like states)?
⇒We have data that indicates this is 

an important question to answer
»We need a strategy to answer this 

question with new/better data.
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Physics of  jet quenching

•Crucial question:

– Does parton evolution in 

medium look anything 

like  a “normal” parton 

shower?

•Attempt to distinguish

– Weakly coupled radiative 

+ collisional energy loss

– Strongly coupled/non-

perturbative quenching

•Hard to tell looking 

only at hadrons

– Need to see jet (or not!)
9

?

9

Q#2: One (crude) attempt

33

From BNL seminar july 2008



Thoughts / My perspective (5)

Suppose we conclude based on 
experimental evidence that the physics of  
quenching is weakly coupled:
• Q#2.5: Is original Gyulassy-Wang model on 
which all subsequent calculations rely 
correct?

• Q#2.5.5 If  so, which is the right limit?
–Thick medium (BDMPS)
–Thin medium (opacity expansion)
–In-between (?)
⇒Should be decided on basis of   

empirical evidence not prejudice

34



Thoughts / My perspective (6)
Suppose quenching is weakly coupled and 
the thick-medium limit applies
•Is AMY analysis of  formation lengths 
correct?

•Can parton energy loss really be treated 
separately from fragmentation?
–Or is evolution of  FF in the medium the 

right/only way?
•etc…
•My opinion: 

–much of  what we should be doing here is 
formulating such questions and laying out 
a path to answering them.
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Back to PHENIX
• PHENIX will continue to develop:

–Full jet measurments
⇒And full set of  correlations with other 

observables.
–(direct) gamma-hadron / gamma-jet
–v2 at high pT

• With upgrades
– Jets (via tracking) with VTX
⇒ |η| < 1.2

– Charm (D) and bottom at high pT

– High-pT photons, π0 in larger acceptance
⇒ ~2 < |η| < ~3 with Δφ = 2π

36



Backup



p-p, Triggered vs Min-bias Comparison
• Above p-p data 
from Level-1 
4x4 tower 
trigger

• Here we show 
comparison 
with min-bias 
trigger.

• Agreement 
within <~ 10%
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p-p: Acceptance Systematics
• How well does 

PHENIX have 
edge effects 
under control?

• For all above 
results, apply 
fiducial cut
– Jet 0.05 away 

from edge

• Suppose we 
tighten cut
– Jet 0.15 away 

from edge

• Re-do analysis
– Consistent 

within 15 - 20% 39
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Fake Jet Rejection: Bias?
• Obvious question:

– Doesn’t fake jet rejection bias jet sample?

• Answer:

– Potentially, yes.
⇒But, better to measure RAA for jets we know  

how to find (w/ vacuum-like parton shower, 
than introduce systematics from fake jets.

» If  we see suppression, we have learned 
something important already

– And, as we have shown, fake rejection has small 
effect in Cu+Cu above ~ 10-12 GeV
⇒But, we expect much larger effects in Au+Au
⇒Best to understand potential biases, 

consequences of  fake jet rejection in Cu+Cu.
40



Recent Improved Jet Algorithms
• Recent progress in development of  (practical) 
infrared-safe, collinear-safe jet algorithms

41

Cacciari,
Salam,
Soyez

• “No-brainer” that we should try anti-kT and C/A 
with filter for comparison to Gaussian filter
➡Impact of  PHENIX acceptance needs study.



Cu-Cu Unfolding: Before/After

42



p-p into Cu-Cu: Embedding Response

43

)c (GeV/rec−CuCu
T

p10

)c
 (G

eV
/

pp
re

c−
Tp

10

0

1000

2000

3000

40000-20% 20-40%

40-60% 60-80%



Gaussian Filter: Jet ET Correction
• The Gaussian filter output is more like an 
“energy flow” variable than true jet energy.
– But, there is a well-defined expansion that allows 

corrections to the Gaussian filter to be calculated.

– Gaussian filter is just the first term in this expansion.
– Evaluate the second term to assess how much the 

filter is distorting the jet energy measurement. 
44
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Gaussian Filter: Jet ET Correction (2)
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Gaussian Filter: Jet ET Correction (3)
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