What can we learn from/about QCD energy loss?

(From an experimentalists point of view)

Marco van Leeuwen, Utrecht University

What can we expect to learn?

- Understand in-medium fragmentation
- Use this understanding to measure medium proporties (density, temperature)

WARNING: This is not applied physics

NO need to 'model everything' – Need to address fundamental
questions about QCD

- 'perturbative': radiation, coupling between hard partons and medium
- 'strongly coupled': fundamental insights about bulk matter and confinement (poss. including hadronisation)

Parton energy loss – generic interpretation

This is what we are after

P(∆E) combines geometrywith the intrinsic process– Unavoidable for many observables

Notes:

- This formula is the simplest ansatz Test this one first unless good counter-arguments
- Analogous 'formulas' exist for other observables,
 e.g. di-hadrons, jet broadening, γ-jet

Some things we learned from R_{AA}

Suppression large ⇒ dense medium

 $R_{AA} \sim \text{independent of } p_T \text{ at RHIC}$ Important fact, or coincidence?

Black-white scenario, power-law+constant fractional loss, or complicated interplay?

Some things we learned from I_{AA}

Near side

Yield of additional particles in the jet

No suppression

Away side

Yield in balancing jet, after energy loss

Away side associated

Suppression by factor 4-5 in central Au+Au

Near side: No modification ⇒ Fragmentation outside medium?

Away-side: Suppressed by factor 4-5 ⇒ large energy loss

Black-white scenario, insensitive to E-loss, or complicated interplay?

Some things we learned from theory

First-guess for RHIC: $\langle \Delta E/E \rangle \sim 0.2$

Typical for RHIC: $R_8 \sim 0.2$

Expect P(0) + broad distribution out to large E-loss ⇒ Effectively black-white?

Round I: measure R_{AA} and extract medium properties

PHENIX, arXiv:0801.1665, J. Nagle WWND08

PQM
$$<\hat{q}> = 13.2^{+2.1}_{-3.2} \text{ GeV}^2/\text{fm}$$

WHDG $dN_g/dy = 1400^{+200}_{-375}$
ZOWW $\epsilon_0 = 1.9^{+0.2}_{-0.5} \text{ GeV/fm}$
AMY $\alpha_s = 0.280^{+0.016}_{-0.012}$

GLV, AMY: T = 300-400 MeV BDMPS: T ~ 1000 MeV

Clearly, we do not understand parton energy loss well enough to learn about the medium

Intermezzo: need a common scale

To discuss medium properties, need a common scale Obvious choice: *T*

+ scheme to calculate relevant variables μ , λ

e.g. gluon gas, Baier scheme:

$$\mu = gT = \sqrt{4\pi\alpha_s}T \qquad \lambda = \frac{1}{\rho\sigma} \qquad \rho = \frac{16\cdot 1.202}{\pi^2}T^3 \qquad \sigma = \frac{9\pi\alpha_s^2}{\mu^2}$$

$$\hat{q} = \frac{72\cdot 1.202 \alpha_s^2}{\pi}T^3$$

However, HTL:
$$\hat{q} = 3\alpha_s m_D T \ln \left(\frac{\Lambda^2}{m_D^2} \right) = 1.37 \text{ Baier } \ln \left(\frac{\Lambda^2}{m_D^2} \right)$$

Please specify exactly how you calculated!

Note: the 'details' are important, but common to all calculations

– a separate discussion

Find the differences...

First-guess for RHIC: $\langle \Delta E/E \rangle \sim 0.2$

Typical for RHIC: $R_8 \sim 0.2$

Differences not restricted to T, ρ only

For example: BDMPS, GLV give different $P(\Delta E)$

Good: provides handle to discriminate models/theories

But how?

How to progress

Two approaches, in parallel (experiment, theory):

- 1) Perform new measurements to test energy loss theories
- 2) Identify differences between models/theories and devise tests

Note: complicated calculations, important to have ongoing discussion between theory and experiment

Examples:

- I_{AA}: change average over medium
- γ-hadron: mono-chromatic partons
- v₂, R_{AA} vs reaction plane: check geometry/path length dependence
- Jet-finding: change sensitivity to many aspects of E-loss

One obvious way to progress: calculate all of the above in all formalisms to see whether there is sensitivity to the differences

(somewhat brute-force...)

Round IIa: using R_{AA} and I_{AA} together

Di-hadrons provide stronger constraint on density?

N.B. update by Nagle, WWND08

Renk: elastic ∞ L does not fit R_{AA} and I_{AA} together

Are R_{AA} and I_{AA} consistent with one E-loss scenario? + γ -jet?

Round IIb: measuring geometry

e.g. R_{AA} vs reaction plane

'Measurement is done'

Module caveats about reaction plane, non-flow?

R_{AA} vs reaction plane sensitive to geometry model

Round X: heavy flavour

Idea:

Dead-cone effect: heavy quarks lose less energy

- Different probe, different sensitivity
- Important cross-check

Measured suppression larger than expected

Many items under discussion: experimental results (STAR-PHENIX discrepancy) B/D ratio, etc

Need to understand this one before claiming victory

Too much details to discuss for this talk

Thoughts about black-white scenario

Or: Hitting the wall with $P(\Delta E)$

- At RHIC, we might have effectively a 'black-white scenario'
 - Large mean E-loss
 - Limited kinematic range
- Different at LHC?
 - Mean E-loss not much larger, kinematic range is?
 - Or unavoidable: steeply falling spectra

In addition: the more monochromatic the probe, the more differential sensitivity γ -jet, jet-reco promising!

The request from experiment

Measure-everything approach not very efficient, nor satisfying

Can we narrow down the model-space? Which observables are sensitive?

`Tell us what to measure (and how precise)'

Example of killer plot

OK, just for illustration – this one has caveats

Measurement sensitive to energy loss distribution $P(\Delta E)$ Unfortunately: most scenarios in the plot already 'ruled out'

Can we come up with other candidates?

Summary

- Possible goals of energy loss measurements:
 - Understand in-medium fragmentation energy loss
 - Infer medium density (with specified caveats, if necessary)
- Need common scale to compare theories/models
 - Reference problem: TECHQM brick
 - Need to agree on reference scale T
- Conclusion so far: Large differences between models
 - T = 500 1000 MeV (my estimate, without expansion?)
- Need to identify observables that test energy loss models in more than one way
 - − I_{AA} : indicates $\Delta E \propto L$ − More precise data desirable and achievable
 - γ-jet: data still fresh, limited precision
 - R_{AA} vs reaction plane, v_2 : mostly test geometry (details?)
 - Jet measurements: next talks

Extra slides

Critical look at pion R_{AA} from RHIC

Sizable differences between STAR, PHENIX R

Taking stat+sys together, deviation is \sim 2 sigma for 5.25 < p_T < 20

STAR/PHENIX comparison

Difference sits in Au+Au result...

Medium density from di-hadron measurement

 R_{AA} and I_{AA} give similar medium density in HT

What about other formalisms?

Outlook for γ -jet at RHIC

Projected performance for γ-hadron measurement

Current uncertainties large, improvements expected

Transport and medium properties

Transport coefficient

$$\hat{q}$$
 = 2.8 ± 0.3 GeV²/fm (model dependent)

(see previous talk: Steinberg)

Lattice QCD: η/s < 0.1 (Meyer)

From v₂

 $\frac{\eta}{-}$ <0.1

Broad agreement between different observables, and with theory A quantitative understanding of hot QCD matter is emerging

Some pocket formula results

GLV/WHDG: $dN_g/dy = 1400$

$$\rho(\tau) = \frac{dN_g}{dy} \frac{1}{\tau \pi R^2} \qquad \rho(\tau_0 = 1 \text{ fm}) = 12.4 \text{ fm}^{-3} \qquad \rho = \frac{16 \cdot 1.202}{\pi^2} T^3$$

$$T(\tau_0) = 366 \text{ MeV}$$

PQM: $\hat{q} = 13.2 \text{ GeV}^2/\text{fm}$ (parton average)

$$\hat{q} = \frac{72 \cdot 1.202 \,\alpha_s^2}{\pi} T^3$$
 T = 1016 MeV

AMY: T fixed by hydro (~400 MeV), α_s = 0.297

Large difference between models?