STAR Jet quenching overview

Mateusz Ploskon

Outline

- Jet quenching and its measurements
- Full jet reconstruction in heavy-ion collisions?
- Recent measurements of jets at STAR/RHIC
- Outlook

Jets in p+p and Au+Au

We use the jets to probe the medium!

Nice idea... but there is a price to pay...

Finding jets?

Jet quenching observations in heavy-ion collisions at RHIC

Jet quenching: recoil jet suppression via leading hadron azimuthal correlations

Di-hadron correlations with **high**-pt associated hadrons

From hadronic to energy flow observables

- Single and di-hadron triggered observables:
 - Approximate jet (axis etc.)
 - Single-hadron and di-hadron observables fold production spectra with probability of partonic energy loss
 - Weak constrains on energy loss (upper and lower limits only)
 - Suffer from (geometrical?) bias towards non-interacting jets

Need for more differential measurements to probe *partonic* energy loss

Full jet reconstruction

Full jet reconstruction

Motivation and Strategy

Physics of full jet reconstruction in heavy ion collisions

O Caveat: initial state nuclear effects. Ploskon, TECHQM CERN July 2009

Heavy Ion collisions and background characterization

 Main uncertainty: underlying event non-uniformities induce uncertainties on background estimation => jet energy resolution
 Extra handle: utilize multiple jet algorithms and their different sensitivity to heavy-ion background.

Background

Spectrum unfolding

Background non-uniformity (fluctuations) and energy resolution introduce pT-smearing

Correct via "unfolding": inversion of full bin-migration matrix

Check numerical stability of procedure using jet spectrum shape from PYTHIA

Procedure is numerically stable

Correction depends critically on background model

main-systematic uncertainty for Au+Au

Fake jet contamination/STAR

"Fake" jets: signal in excess of background model from random association of uncorrelated soft particles (i.e. not due to hard scattering)

"Fake" jet rate estimation:

- Central Au+Au dataset (real data)
- Randomize azimuth of each charged particle and calorimeter tower
- Run jet finder
- Remove leading particle from each found jet
- Re-run jet finder

Fake jet contamination/STAR

"Fake" jets: signal in excess of background model from random association of uncorrelated soft particles (i.e. not due to hard scattering)

"Fake" jet rate estimation:

- Central Au+Au dataset (real data)
- Randomize azimuth of each charged particle and calorimeter tower
- Run jet finder
- Remove leading particle from each found jet
- Re-run jet finder

Trigger corrections:

- p+p trigger bias correction
- p+p Jet patch trigger efficiency

Particle level corrections:

- Detector effects: efficiency and pT resolution
- "Double* counting" of particle energies
 - * electrons: double; hadrons: showering corrections
 - All towers matched to primary tracks are removed from the analysis

Jet level corrections:

- Spectrum shift:
 - Unobserved energy
 - TPC tracking efficiency
- BEMC calibration (dominant uncertainty in p+p)
- Jet pT resolution
- Underlying event (dominant uncertainty in Au+Au)

Full assessment of jet energy scale uncertainties

- Weak model dependence: only for single-particle response, p+p trigger response
- No dependence on quenching models

Systematic corr

Trigger corrections:

- p+p trigger bias correction
- p+p Jet patch trigger efficiency

Particle level corrections:

- Detector effects: efficiency and pT resolution
- "Double* counting" of particle energies
 - * electrons: double; hadrons: showering corrections
 - All towers matched to primary tracks are removed from the analysis

Jet level corrections:

- Spectrum shift:
 - Unobserved energy
 - TPC tracking efficiency
- BEMC calibration (dominant uncertainty in p+p)
- Jet pT resolution
- Underlying event (dominant uncertainty in Au+Au)

Full assessment of jet energy scale uncertainties

Data driven correction scheme

- Weak model dependence: only for single-particle response, p+p trigger response
- No dependence on quenching models

p+p trigger (coincidence) biases recorded jet population – jet Et dependent correction

Offline vertex cuts -> x-section calculation

Reaction trigger influencing jet spectra

Systematic cor

Trigger corrections:

- p+p trigger bias correction
- p+p Jet patch trigger efficiency

Particle level corrections:

- Detector effects: efficiency and pT resolution
- "Double* counting" of particle energies
 - * electrons: double; hadrons: showering co
 - All towers matched to primary tracks are removed from the analysis

Jet level corrections:

- Spectrum shift:
 - Unobserved energy
 - TPC tracking efficiency
- BEMC calibration (dominant uncertainty in p+p)
- Jet pT resolution
- Underlying event (dominant uncertainty in Au+Au)

Full assessment of jet energy scale uncertainties

Data driven correction scheme

- Weak model dependence: only for single-particle response, p+p trigger response
- No dependence on quenching models

Jet patch trigger efficiency:
Patch 1x1 (in pseudo-rap. and azimuth)
requesting ~7.5 GeV neutral energy (p+p
only)

Large bias at low jet-pt (x2 at 20 GeV/c), but persists up to 30 GeV/c

- Weak model dependence: only for single-particle response, p+p trigger response
- No dependence on quenching models

Trigger corrections:

- p+p trigger bias correction
- p+p Jet patch trigger efficiency

Particle level corrections:

- Detector effects: efficiency and pT resolution
- "Double* counting" of particle energies

 - * electrons: double; hadrons: showering correct.

 All towers matched to primary tracks are removed from the

Jet level corrections:

- Spectrum shift:
 - Unobserved energy
 - TPC tracking efficiency
- BEMC calibration (dominant uncertainty in p+p)
- Jet pT resolution
- Underlying event (dominant uncertainty in Au+Au)

Full assessment of jet energy scale uncertainties

Data driven correction scheme

- Weak model dependence: only for single-particle response, p+p trigger response
- No dependence on quenching models

Several possibilities: MIP, constant E-fraction, complete removal of the "matched energy"

Minimize the effect.

Trigger corrections:

- p+p trigger bias correction
- p+p Jet patch trigger efficiency

Particle level corrections:

- Detector effects: efficiency and pT resolution
- "Double* counting" of particle energies
 - * electrons: double; hadrons: showering correct
 - All towers matched to primary tracks are removed

Jet level corrections:

- Spectrum shift:
 - Unobserved energy
 - TPC tracking efficiency
- BEMC calibration (dominant uncertainty in p+p)
- Jet pT resolution
- Underlying event (dominant uncertainty in Au+Au)

Energy scale correction -> "Shift"

Estimate the unobserved jet energy and apply "average" correction

#neutron ~ #proton (?)

Full assessment of jet energy scale uncertainties

- Weak model dependence: only for single-particle response, p+p trigger response
- No dependence on quenching models

Trigger corrections:

- p+p trigger bias correction
- p+p Jet patch trigger efficiency

Particle level corrections:

- Detector effects: efficiency and pT resolution
- "Double* counting" of particle energies
 - * electrons: double; hadrons: showering corrections
 - All towers matched to primary tracks are removed f

Jet level corrections:

- Spectrum shift:
 - Unobserved energy
 - TPC tracking efficiency
- BEMC calibration (dominant und
- Jet pT resolution
- Underlying event (dominant uncertainty in Au+Au)

Energy scale correction -> "Shift"

TPC inefficiencies – averaged correction

Full assessment of jet energy scale uncertainties

- Weak model dependence: only for single-particle response, p+p trigger response
- No dependence on quenching models

Trigger corrections:

- p+p trigger bias correction
- p+p Jet patch trigger efficiency

Particle level corrections:

- Detector effects: efficiency and pT resolution
- "Double* counting" of particle energies
 - * electrons: double; hadrons: showering corrections
 - All towers matched to primary tracks are removed from the analysis

Jet level corrections:

- Spectrum shift:
 - Unobserved energy
 - TPC tracking efficiency
- BEMC calibration (dominant uncertainty in
- Jet pT resolution
- Underlying event (dominant uncertainty in Au+Au,

5% uncertainty on calibration translates to large uncertainty on x-section!

Ongoing very active work to reduce it.

Full assessment of jet energy scale uncertainties

- Weak model dependence: only for single-particle response, p+p trigger response
- No dependence on quenching models

Trigger corrections:

- p+p trigger bias correction
- p+p Jet patch trigger efficiency

Particle level corrections:

- Detector effects: efficiency and pT resolution
- "Double* counting" of particle energies
 - * electrons: double; hadrons: showering corrections
 - All towers matched to primary tracks are removed from the analysis

Jet level corrections:

- Spectrum shift:
 - Unobserved energy
 - TPC tracking efficiency
- BEMC calibration (dominant unc
- Jet pT resolution
- Underlying event (dominant und

Studies with di-jets in p+p (benchmarked with Pythia detector/particle jets)

- Correction by unfolding

Full assessment of jet energy scale uncertainties

- Weak model dependence: only for single-particle response, p+p trigger response
- No dependence on quenching models

Trigger corrections:

- p+p trigger bias correction
- p+p Jet patch trigger efficiency

Particle level corrections:

- Detector effects: efficiency and pT resolution
- "Double* counting" of particle energies
 - * electrons: double; hadrons: showering corrections
 - All towers matched to primary tracks are removed from the analysis

Jet level corrections:

- Spectrum shift:
 - Unobserved energy
 - TPC tracking efficiency
- BEMC calibration (dominant uncertainty in p+p)
- Jet pT resolution
- Underlying event (dominant uncertainty in Au+Au)

Background subtraction -> smearing – correction by unfolding

Full assessment of jet energy scale uncertainties

- Weak model dependence: only for single-particle response, p+p trigger response
- No dependence on quenching models

Trigger corrections:

- p+p trigger bias correction
- p+p Jet patch trigger efficiency

Particle level corrections:

- Detector effects: efficiency and pT resolution
- "Double* counting" of particle energies
 - * electrons: double; hadrons: showering corrections
 - All towers matched to primary tracks are removed from the analysis

Jet level corrections:

- Spectrum shift:
 - Unobserved energy
 - TPC tracking efficiency
- BEMC calibration (dominant uncertainty in p+p)
- Jet pT resolution
- Underlying event (dominant uncertainty in Au+Au)

Full assessment of jet energy scale uncertainties

- Weak model dependence: only for single-particle response, p+p trigger response
- No dependence on quenching models

What is a "jet" in HI collisions?

What is a jet?

A spray of collimated showers/particles

- Hardly ever better defined...

- Direct indication of fragmenting parton
- Good assumption: approximate parton/jet energy by reconstructing energy of individual particles/ constituents
- Jets (unlike single hadrons) are objects which are "better" understood/calculable within pQCD

QCD collinear divergence

S.D Drell, D.J.Levy and T.M. Yan, Phys. Rev. **187**, 2159 (1969)

N. Cabibbo, G. Parisi and M. Testa, Lett. Nuovo Cimento **4**,35 (1970)

J.D. Bjorken and S.D. Brodsky, Phys. Rev. D 1, 1416 (1970)

Sterman and Weinberg, Phys. Rev. Lett. 39, 1436 (1977) ...

What is a jet in HI Collision?

Measure A: vacuum fragmentation

Measure B: vacuum fragmentation + medium induced radiation

Unmodified fragmentation?

Loss of yield ⇔ energy deficit

Modified "fragmentation" pattern?
No loss of yield ⇔ full jet energy?

"Finding" jets

Particles {p_i}

Jets {j_k}

"Finding" jets

Jet algorithms

Anti-k_t expected to be less susceptible to background effects in heavy ion collisions

Algorithms: k₊ and anti-k₊ from FastJet*

- Resolution parameter R = 0.4, 0.2

Yui Shi Lai, arXiv:0806.1499, QM 2009

Filter

Results from PHENIX

$$\iint_{\mathbb{R}\times S^1} d\eta' d\varphi' p_T(\eta', \varphi') \exp\left[-\frac{(\eta - \eta')^2 + (\varphi - \varphi')^2}{2\sigma^2}\right] = \max!$$

- Seedless, infrared and collinear safe
- Optimizes S/B (focus on the "core" of the jet)
- Robust against background

Jet measurements at RHIC

Inclusive jet cross-section in p+p at $sqrt(s_{NN}) = 200 \text{ GeV} - new algorithms$

Inclusive jet cross-section in p+p at $sqrt(s_{NN}) = 200 \text{ GeV} - new algorithms$

Jet yields in heavy-ion collisions: Central Au+Au sqrt(s_{NN}) = 200 GeV

- Fully corrected jet spectrum
- Exactly the same algorithms and jet definitions used as compared to p+p
- Bands on data points represent estimation of systematic uncertainties due to background subtraction

"R" systematics

Inclusive jet spectrum: p+p and central Au+Au (R=0.4 and R=0.2)

Cross-section ratios in p+p and Au+ Au with R=0.2/R=0.4

p+p: "Narrowing" of the jet structure with increasing jet energy

Au+Au: Strong broadening of the jet energy profile

Ratio R=0.2/R=0.4in pp @ sqrt(s)=200 GeV/c

Ratio much smaller with strong tend

Ratio R=0.2/R=0.4 in pp @ sqrt(s)=200 GeV/c

Jet shapes at RHIC and Tevatron

$\mathsf{Jet}\;\mathsf{R}_\mathsf{AA}$

R_{AA} Jets and Energy flow in smaller "cone" radii

Significant drop of R_{AA} as a function of jet p_T for R=0.2 as compared to R=0.4 Jet energy not fully recovered in small "cones" – shift towards lower p_T

Significant drop of R_{AA} as a function of jet p_T for R=0.2 as compared to R=0.4 Jet energy not fully recovered in small "cones" – shift towards lower p_T

Jet fragmentation patterns

Fragmentation pattern - measurement

Fragmentation Reference: p+p

Further observables

- Jet shapes
- Intra-jet distributions
- 3-jet observables

•

Subjets

Count sub-jets when $y_{ij} > y_{cut}$: $y_{ij} = 2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})/E_{cm}^2$

$$y_{ij} = 2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})/E_{\text{cm}}^2$$

Subjet distributions:

- + Insensitive to hadronization
- + Quenching signal with bg suppressing pt cut
- Suffer from energy irresolutions:

$$-log_{10}(f_{corr}^2)$$

where

$$f_{corr} = E_{jet}^{true} / E_{jet}^{measured}$$

C. Zapp et al. arXiv:0804.3568 [hep-ph]

Subjets

Count sub-jets when
$$y_{ij} > y_{cut}$$
: $y_{ij} = 2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})/E_{cm}^2$

$$y_{ij} = 2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})/E_{\text{cm}}^2$$

jet rates for a single 100 GeV quark jet

M. Ploskon, TECHQM CERN July 2009

Subjet distributions:

- + Insensitive to hadronization
- + Quenching signal with bg suppressing pt cut
- Suffer from energy irresolutions:

$$-log_{10}(f_{corr}^2)$$

where

$$f_{corr} = E_{jet}^{true} / E_{jet}^{measured}$$

C. Zapp et al. arXiv:0804.3568 [hep-ph]

Subjets at Tevatron(D0)

 Reclustering (re-run of a kt algor) on a jet -> recombination into n-subjets separated by y_{min} cut -> used for q-g jet discrimination

Basic Idea:

- Compare the subjet multiplicity of jets with same $E_{\rm T}$ and η at center of mass energies 630 and 1800 GeV

Vogelsang: pp @ 200 GeV

RHIC will measure pp@500 GeV LHC?

Summary

- HI collisions create dense, hot colored medium, opaque to energetic partons
- Hadronic observables provide limited constrains for understanding of the partonic energy loss -> need for full jet reconstruction:

Full jet reconstruction:

- Qualitatively new tool for assessment of the jet quenching in terms of energy flow (rather than hadronic observables)
- Precision of the background estimation crucial in AA
- HI: Significant radiation "outside" R=0.4
- o Broadening of jet energy profile?
- "Detailed" studies of jet-medium interactions possible?

Outlook

- Full jet reconstruction at LHC:
 - Algorithms developed for pileup removal at LHC applicable to HI collisions
 - New algorithms being defined and explored
 - Pioneering analyses at RHIC provide tools and analysis techniques directly applicable at LHC
 - Many data driven corrections already found and explored

Di-Jet measurements

Di-jets in Au+Au

Trigger selection -> Biased population:

- Significant suppression of recoil jet spectrum
- Comparable to single particle RAA

Di-jets in Cu+Cu

No centrality dependent broadening within uncertainties!

Jet fragmentation pattern in Au+Au

Fragmentation: ratio AuAu/pp

Fragmentation: ratio AuAu/pp

Fragmentation: ratio AuAu/pp

R_{AA} in Cu+Cu: Centrality systematics

Jet R_{AA} in Cu+Cu

Jet R_{AA} in Cu+Cu

