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ATLAS jet quenching plan, needs & other
Issues
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Stony Brook University & BNL

= Current issues with pQCD models

= What ATLAS can do to help the situation
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Interaction Between Jet and the Medium
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= [hree inseparable aspects:

medium response
Medium collectivity

= Jet quenching

pQCD relies on separation of scales
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Different from pile up


Status of Jet Tomography

= Our understand of the energy loss not complete

= Current pQCD models describe centrality dependence of
suppression but not the RP dependence. s gass et.af arxiv:0808.0908

= Sensitivity to initial geometry and hydro-evolution.
= Difference among the models=> x4 difference in ghat
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Beyond pQCD Mechanism?

s Is pQCD treatment of eloss applicable for sQGP?
érocaN2

s ¢c?

= Non-perturbative approachxes give very different density, path
length dependence.

AE oc [ ,(cll—EoclogE

& oc \&gy,, N, (liu,urs 2007), AE oc I’ (Gubsor 2008),(;—E oc E* (Khazeev 2008)
X

R. Wei arXiv:0907.0024

- 0.25 rT [ LI T T L L L—
Liao, Shuryak: energy loss é PHENIX Preliminary & Pr> 08¢V g
is strongest around T. 0.2 O Amy -
E — Drees & Jia E
s1sp g o
R B ]
0.05 |- -
00— H00 20 300 400




The Scaling Pattern of the RHIC Data

= In absorption picture: Ryy=exp(-kL), logRy,=-KL
= 6 centrality and 6 angular bin

I} =(x*)  L(Af)=
0903.4886
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= Very good scaling, but this L is different from the length
implied by energy loss models j= j 0, Pp(r+Ddrdl

R. Lacey et. al. 0907.0168, figure made by R. Wei
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How to Study Jet-medium Interaction at LHC?

= Would like to use probes with different coupling
(quarks, gluons, photons, Z, heavy quarks) to understand
jet quenching, medium response, medium collectivity

Supersonic: probe Stationary: probe
Energy loss/medium response Collective flow
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ATLAS HI Physics Program Overview

“Day-1" measurements to probe bulk properties ®
= Multiplicity, anisotropy, spectra.

Jet and photon measurement to probe the jet quenching &
medium response.

= Jet reco., jet multiplicity and shape, dijet, v, y-jet, u-tagged jet.

Upsilon and J/Y¥ to probe Debye screening.

Low X physics at forward n to probe the initial condition.
= Jet, spectra, correlation at forward n
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Strategy for Jet Tomography

» Suppression and Anisotropy (R, and v2) for single particles
= Charged hadrons, photons, heavy quarks

= Heavy quark eloss puzzle? Surface bias? Anisotropy at high pT?

= Suppression, Shape modification and Anisotropy for jets
= Single jets, di-jets, y-jet, b-jet

= Jet reconstruction will be an iterative process.

Jet shape, jet multiplicity unknown: Likely different from p+p

Understand background subtraction: Should medium response be
included in jet definition? How to separate it from jet shower?

Require comparison of different jet algorithms to reach sensible jet
definition: R,, will depends on the jet algorithm (cone size, etc)
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Inclusive Jet Spectra

s Reconstruction is fully efficient above 100 GeV in most
central Pb+Pb event
= Expect >10° jets with 100 GeV in 0.5 nb! Pb+Pb events

= Sensitive to >20% level suppression. —
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Study Jet Modification

= Jet multiplicity and Jet shape
= Reflect energy loss and medium response (eg. the ridge)
Sensitive to 20% level modification.
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Identifying Direct y

Combine y-ID and isolation cuts with relative rejection:20-50
= S/N ~ 1 at 100 GeV assuming hadrons not suppressed
= S/N ~ 1 at 30 GeV assuming factor of 5 suppression on hadrons.

ET'" (GeV)

L L I L L B AL L |
10 dN/dn=2700 (0-10%)

T =

c C

- [

o)

- |

2 4L

Q 15

© C

@

[ AN I

S 10'F Stat. of simulation

2 Stat. estimation
C for 1 year running

PR TR T [N TR ST TN TR [N TR TN TR TN S TR T S

0 50 100 150

Signal/Background

105—

dN/dn=2700 (0-10%)

TECQM 2009

—150 200
EEIEU"'I (GeV)

11


Reasonable S/N is need for robust study of gamma-jet!


Direct Photon Spectra

dN,"dl] 1700 (10-30 /'] dN/dn=2700 (0- 10/]

— $Stat. of simulation —
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dN/dE_ (GeV)™

= Expected direct photon spectra for 0.5 nb! in |n|<2.4
= Assuming neutral hadron Ry,=1 (worst case).

= v rate for 1 year LHC run of 0.5 nb'L,
= 200k at E>30 GeV, 10 k at E>70 GeV

» Measurement y-jet correlation and fragmentation function
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Final-State Direct vy

s Fragmentation, conversion, bremsstrahlung photons
= Carry detailed information about the jet-medium interaction
= Dominate/important at pT<30-50 GeV, not isolated.
= Can be enriched via y-ID cuts

Strip layer provide unbiased/centrality-independent factor of 3-6 background rejection
4 Turblde et al. Phys Rev C72 (2005)014906
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Heavy Quark-jet Correlation

= Tag heavy quark jet (c,b) by high p; muons —@
= Require muon p;>5 GeV and jet E+>35 GeV e (

= Low py: 1/3 of away-side jet each from b,c, light
quarks+gluons.

= High p;: dominated by bottom quark.
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Heavy quark jet (c,b) are produced in pairs
One can further separate b and c via displaced vertex measurement.
Provide a clean way of tagging heavy quark jet, important for studying the heavy quark energy loss,



Different Collision Geometry: pp(in Au+Au) # pp

= NN collision geometry not the same in A+A/p+A/p+p collisions

= Minimum bias condition: a p+p collision happens when the
distance is less than Yield, ,

R =
_ (N bmary)Yleld
d = Gpp4:1.1562fm,

AA

Condition used to evaluate the Npart
& = 42mb = 4.2 fin® " | ate the \p
and Ncoll in Au+Au collisions via
A At A e ] Glauber framework
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Distinguish between two impact parameters: b,,,, and b,
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p+p Impact Parameter Distribution

= [he impact parameter distribution for p+p p o« 27zb

= Non-linear dependence is seen for very peripheral collisions

0.2

with small b or small ncoll. ~_,=T,,c

inel”
pp "

= Peripheral Au+Au events are bias to peripheral p+p collisions
= Not a problem with minimum bias A+A collision.

= Bias increases with p+p cross section (such as LHC)
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Events are not uniformly distributed


Hard-scattering Transverse Distribution

= Hard-scattering probability depends on the impact parameter
= Distribution different from minimum bias condition
= Impact parameter bias leads to less hard scattering cross section.

Hard-scattering probability distribution
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In principle given by GPD (generalized parton distribution function)



Calculating Ncoll
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Nw __ i pair in event | " pair in event
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TAB

= However, MC glauber calculate Ncoll by setting do/db=const

(i.e the hard-scattering has same profile as mb)
[ db2rb fmb(b)d"hs( b,)

[db2rb f,,(b)

N oy = Z fmb(bi): Z (~

v.—r.
i™ pair in event i,j in event

l J
» In general for centrality selected bins Ve * Nea

= But one can show that for minimum bias ~*, =~
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Checking the Size of the Effect

s We check the following four different hard-scattering
profile.
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Checking the Size of the Effect : AuAu

ms [he effects are significant in peripheral collisions.
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= hard-core: >20% correction for Ncoll <5, 15% for Ncoll upto 15.

= Positive correction in central, but <2% for all cases.
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LHC Prediction

= pp cross section is bigger, bias is bigger.
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Summary

= Uncertainties of pQCD models need to be quantified.

= Powerful constraints can be provided by ATLAS@LHC.
= Single particle, correlation and jet observables

= ATLAS Heavy-ion program plan to probe the QCD matter via
jets, photons, and heavy quark.
= Large rate, large acceptance and triggering capability.
= Jet tomography with reduced bias.

= Understanding the collision geometry is crucial for Ry,.
= For both p+Pb and Pb+Pb
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Detailed Control on Collision Geometry

= High precision measurement on event centrality.

= High multiplicity give resolution better than 10% in most bins.
= Redundant measurement in many detectors.

= EXxcellent reaction plane resolution
= Redundancy help to suppress the non-flow effect

Detailed jet-tomography studies!

E I §
< 03l
= 0.8
t -
o l
==
g 0612 Extracted
- K 4
0.43/
8
i Truth
0.2 i
:kzzg ' . . “ M ECOK?};:’:;O?TSSCWTSU e s‘-.'rt'c
00 100 200 301 2 sub-detectors
0 100 200 300 400
N

part

TECQM 2009 23


Many variables (Ncoll, Npart, b) are correlated with centrality.



ATLAS HI Physics Potentials
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< Collision Geometry
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Energy and position resolution for Cone jet

o
(=]

RMS A E,JE;

T =
055_ i + dN/dn = 2700 E ﬁ_ ca?a”e:iswdnﬂ?ou
): + dNidn=1700 R i E
0.4 = dN/dn = 460 - < 0.4 ° o dN/dn = 2700 B
C . ] %) . {.
0.3__ — Iy 1 [ ]
E Lo C 03 ° °© .
02- " ‘1. = 02*‘
C g LA, - ] ] o E
o | 4 a r : 2  m
T I S ‘
00 50 100 150 200 250 300 - | | | | | | | 1
ET"™" (GeV) % 05 1 15 2 25 3 35 45 5
= R . "
<014} > dN/dn = 2700
20.12:— + dN/dn=1700
@ oif « dN/dn = 460 -
0.08- & =
0.06/ *
0.0 4 9 o §
S R S
0.02 oI L I T TP =
LN B Ll

% 50 100 150 200 250 300
ET" (GeV) 26



photon

0

Strip Energy (GeV)

Strip Energy (GeV)

v-ID in central Pb+Pb
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photon

0

v-ID in central Pb+Pb

= Very little background (<50MeV/strip in b=2fm Pb+PDb)

= (Can separate single y from =% n in central event
= Photon identification without isolation in |n|<2.4
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Performance of y-ID Cuts
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= Using the standard egamma variables, but selected for HI environment
= Rejection up to factor of 3 with efficiency of 90% (medium cut)

= Rejection up to factor of 5-6 with efficiency of 50%
= Study final state y: Fragmentation, conversion, bremsstrahlung

= Carry detailed information about the jet-medium interaction

= Dominate/important at p;<30-50 GeV, not isolated

Turbide et al. Phys. Rev. C72 (2005) 014906
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= Clean y-jet A¢ distribution in central Pb+Pb
= Tail comes from pQCD radiation

= Measure in-medium jet fragmentation function

= Can help jet analysis at low E;.
= Tune jet reco. algorithms.

= Reject fake jets.
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Glauber model

The hard-scattering cross-section is the convolution of the
minimum bias p+p cross section with the hard-scattering
probability for each minimum bias collision.

= In p+p collision the event distribution is flat in b.

= In peripheral Au+Au collisions, the distribution biased towards larger b.
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Size of the bias in pAu/dAu collisions

m Effects is smaller since the edge effects is small
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