

Jet Quenching Plans and Needs - CMS -

Christof Roland

Massachusetts Institute of Technology
for the CMS Collaboration

TEC-HQM Collaboration Meeting CERN 2009

Measuring Parton Energy Loss

- We want to study parton energy loss in heavy ion collisions using reconstructed jets
- Experimentally:
 - Reconstruct jets in the detectors
 - Assemble DiJets (γ-Jets)
 - Analyze jet properties
- Physics measurements:
 - Jet E_T spectra
 - Jet Jet Angular correlations
 - Jet fragmentation functions and shape
 - Jet+γ, Jet+Z correlations
 - Tagged heavy quark jets (b, c)
- Compare measurements to Theory
 - Jets are not uniquely defined objects
 - Experience from HEP shows making sense of jet measurements requires very close collaboration between theory and experiment
 - MC Generators, Common jet finders, PDF's

Jet Definitions

- 1) Parton jet
 - This is what we can calculate
- 2) Final state particle jet
 - Fragmentation/hadronization
 - Non-pertubative
 - MC generators rely on parameterizations of experimental data
- 3) Calorimeter Jet
 - This is what we measure in the detector
- Need to associate final state particles with initial parton
 - No unique way of doing this!
 - Jet algorithms
 - Use consistent algorithms when comparing to Models
 - => Jet Calibration

Jet Calibration (pp)

1. Detector response to final state particles

- Correct for
 - Gains
 - Non-linearities
 - Gaps between detector segments
- Use
 - Hardware calibration
 - Source Calibratrion
 - Dijet Energy balance
 - γ Jet correlations Z,W decays

2. Relate final state particles to initial state parton

 Depends crucially on a precise description of jet properties and parton mix by event generators

QCD jets

E.parton (GeV)

- Jet Calibrations are tightly coupled to the physics process in question and to the Jet Algorithm used
- Need very large pp datasets to derive Calibrations from data

General Remark on Jet Studies

5

- In p+p collisions
 - N particle final state -> 2 parton initial state
 - Use reliable MC techniques to connect Theory and Experiment
- In Heavy Ion Collisions
 - O(200) * N_{pp} particle final state -> X * 2 partons...
 - Parton energy loss modifies the relation between final state particles and the initial parton
 - This is the effect we want to measure!
 - But: eliminates our calibration channels
- MC Simulation for HI jet studies
 - Simulate the full multi jet final state
 - Initial state parton mix not trivially calculable
 - Include model of parton energy loss and fragmentation in MC generator
 - Have full access to the final state particles of each parton
 - Process each parton pair separatly with MC jet finder
 - HYDJET Event generator is a first attempt
 - In general we need more sophisticated tools for detailed jet studies in HI

Initial State

- Light quark jets, gluon jets and heavy quark jets have different fragmentation properties
 - Experimentally: different detector responses
 - Theory: parton flavor dependence of quenching
- Need to know the relative abundance of jet flavor in a given sample
 - Experimentally: try restrict the kinematics or production channels to select the processes
 - Y-Jet
 - Z-jet
 - Dijets in dijet mass and center of mass bins to restricts the kinematic region of the the PDF we are probing
 - Theory: PDF's are important
 - HI: Saturation effects, shadowing etc.

DiJets, γ-Jets, Angular correlations

- Angular correlation can control the contribution of NLO processes
 - Gluon vs quark jet content
- HI Specific
 - k_T broadening
 - Decorrelation due to collisional energy loss
- Jet Jet angular correlations are a measurement in its own right
 - DiJet, γ -Jet reconstruction based on angular correlation is important input for more detailed analysis of jet properties

Final state jet E_T

- Parton energy loss breaks the relation between the parton E_T and the final state jet E_T
 - "Out-of-cone" radiation
 - Path length dependence/Surface bias
- Modeling the full final state is essential
 - Fragmentation properties
 - Include the "lost" energy in the final state

- Simulate nuclear geometry
- Simulate continuous parton E_T spectrum
- Apply realistic jet finding algorithm
 - An ideal jet finder that reconstructs the full parton energy independent of the fragmentation/energy loss model will probably not be available any time soon
- Select analysis sample in a fs jet E_T bracket
- Study systematic effects using different quenching models

Frag. Functions and Jet Shapes

near (parton base)

- In medium modifications of Fragmentation functions and Jet shapes should given us more detailled information on the energy loss mechanism.
 - Requires knowledge about parton p_T
 - Jet calibration to parton level is conceptually difficult
- Extract FF from γ-Jet
 - At startup statistics limited
- DiJets:
 - Use final state jet as calibration point?
 - Experimentally accessible
 - Requires full MC on theory side
- Beware of biases
 - Jet finding efficiency can depend on fragmentation properties
 - Measuring FF's in a region with < 100% efficiency will result in biases

5,000 dijets pt 100 GeV generator study p+p Pyquen = quenched p+p Pythia = unquenched

MC Generators for Quenching

- Model Technicalities
 - Common standardized interfaces
 - HepMC, lujets...
 - Ideally all models could be included in the GENSER project
- Model Input
 - Medium characteristics
 - Temperature, flow profiles
 - Energy density grids
 - Temperature grids
 - Every model has different input parameters
- Model Validation
 - In HEP a lot of emphasis is put on validating the generator performance with each release and the correctness of the implementation and interface

Summary

- To perform detailed studies of parton energy loss in heavy ion collisions we need:
 - A variety of Quenching models implemented in MC generators including:
 - Nuclear geometry/Initial state
 - Parton mix
 - Path length dependence/surface bias
 - Parton angular correlations
 - Fragmentation properties/jet shapes
 - Standardized interfaces for generators
 - Workable defaults
 - Validation!
 - Close collaboration between theory and experiment
 - Analyze theory models like data
 - Common analysis strategies for proposed physics signals between theory and experiment