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1 Introduction

This note describes an analysis of the differences found by Van Leuwen as
part of the TECHQM Brick studies between the ASW Single-Hard quench-
ing weights and results from WHDG. A list of the known differences and
differences (re)discovered as part of this analysis is:

• WHDG uses thermal masses for quarks and gluons. ASW does not.

• WHDG assumes a different position dependence for the in-medium
scattering centers in the evaluation of the phase factor in the leading
term in the opacity expansion. ASW quenching weights are evaluated
for a uniform distribution of scattering positions; WHDG is by default
evaluated with exponential distribution (see below).

• In the opacity expansion L/λ ≡ n0L is a parameter of the calculation.
The ASW single-hard quenching weight code uses fixes L/λ = 1; in
WHDG, λ is determined by medium properties and the path length L
is allowed to fluctuate. For the purposes of comparison, the TECHQM
brick analyzed in this note has fixed L = 2 fm and T = 485 MeV (lead-
ing to fixed µ ' 0.94 GeV and λ ' 0.62 fm for fixed αs = 0.3).

• WHDG and ASW use a different cut-off on the k⊥ integration of the
radiated gluon. ASW uses kmax = ω where ω is the gluon energy.
WHDG by default uses kmax = 2x(1− x)Ejet where x = k+/E+.

• WHDG and ASW use different upper limits on the q integration. ASW
uses qmax =∞; WHDG uses qmax =

√
3µEjet.

• ASW takes αs = 1/3; most published WHDG results use αs = 0.3.
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The purpose of this note is to illustrate the impact of these differences in the
implementation of the leading order contribution to the opacity expansion.

In the remainder of this note we describe in detail the basis of the leading-
order in opacity calculations from ASW and WHDG and show explicitly
how they are similar and where they differ analytically. We then show that
when WHDG is modified to include the same limits and assumptions as
ASW, it reproduces the results of the ASW-SH quenching weights code. We
then evolve the limits/assumptions of WHDG back to their original form
and show how the calculations change and how differences with ASW-SH
evolve step-by-step. We find that the most important differences between
the ASW-SH quenching weights code and WHDG arise from

1. The explicit choice in the ASW-SH quenching weights code of L/λ = 1.

2. The difference in the limit of integration over the transverse momen-
tum of the gluon, kmax.

3. The inclusion of the gluon mass in the WHDG formalism.

These points are discussed in more detail in Section 6

2 Comparison of ASW and WHDG opacity ex-
pansion formulae

One may derive the radiative energy loss formulas used in WHDG [1] and the
ASW-SH quenching weights [2], as well as their intermediate steps, starting
from the DGLV results [3]. DGLV is an extension of the GLV [4–6] opacity
expansion for the single inclusive distribution of radiated gluons to include
the mass effects of both the parent parton and the radiated gluon. Both the
radiative piece of WHDG and the ASW-SH quenching weights use only the
energy loss from the first order in opacity; this is justified numerically by
the . 30% effect of including higher order in opacity terms [7, 8].

We start with the DGLV first order in opacity result for the single inclu-
sive distribution of massive radiated gluons from a massive parent parton,
derived from Eq. (83) of [3]:

x
dNg

dx
=
CRαs
π

L

λ

∫
d2q
π

µ2(
q2 + µ2

)2 ∫ 2d2k
π

k · q(k− q)2 − β2q · (k− q)[
(k− q)2 + β2

]2(k2 + β2
)

×
∫
dz

[
1− cos

(
(k− q)2 + β2

2Ex
z

)]
ρ(z),

(1)
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where CR is the color factor appropriate for the parent parton, β is the
modification due to the mass of the parent parton M and the radiated
gluon mg (β = 0 for M = mg = 0) and will be discussed further below,
and ρ(z) is a function normalized to 1 that describes the distribution in the
longitudinal direction z of the medium particle (center) that is scattered off
of. Note that E actually denotes the momentum of the jet, an irrelevant
difference for light partons but not so inconsequential for heavy quark jets.
q is the momentum transfer between the parent parton and the in-medium
scattering center; k is the momentum carried off by the radiated gluon. See
Fig. 1 for a picture illustrating the notation used here. x is the fraction of
the jet plus momentum carried away by the radiation; denoting light-cone
4-vectors with [, ], the momentum of a radiated massless gluon is

k = [k+, k−, k⊥] = [xE+,k2/(xE+),k]. (2)

Figure 1: One of the diagrams contributing to the first order in opacity matrix
element. q is the momentum transfer between the parent parton and the in-medium
scattering center. k is the momentum carried off by the radiated gluon. z is the
distance from the hard production vertex of the parent parton and the scattering
center. Figure adapted from [3].

Two functions of z, both with average values z̄ = L/2, are commonly
used for ρ:

ρtheta(z) =
1
L
θ(L− z) (3)

ρexp(z) =
2
L

exp
(
−2z
L

)
, (4)

where we implicitly assume both distributions are multiplied by a θ(z).
Integrating over the exponential distribution, Eq. (4), as well as over the

angular parts of the k and q integrals (note that one temporarily assumes
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qmax = ∞ in order to shift integration variables q → q − k and analyti-
cally perform two integrals; for more details see [3]), the complete WHDG
expression for the inclusive gluon spectrum to leading order in the opacity
expansion is

x
dNg

dx
=
CRαs
π

L

λ

∫ q2max

0

2q2µ2dq2(
4xE~c/L

)2 +
(
q2 + β2

)2
×
∫ k2

max

0

dk2

k2 + β2

k2
(
k2 − q2 + µ2

)
− β2

(
k2 − q2 − µ2

)(
(k − q)2 + µ2

)3/2((k + q)2 + µ2
)3/2 ,

(5)

where β = x2M2 + (1 − x)m2
g. WHDG restores the (1 − x) coefficient

to mg in β dropped in [3] (consistent with the small x approximation),
but does not restore any possible overall (1 − x) normalization factors [9].
mg = µ/

√
2 for the gluon mass, and M = µ/2 for the mass of a parent high-

pT quark; these values were found to be good approximations to the results
when using the full HTL propagators [10]. WHDG takes qmax =

√
3µE and

kmax = 2x(1 − x)E; these integration cutoffs will discussed further below.
The k integration in Eq. (5) may be performed analytically, but the result
is both unwieldy and uninformative.

In the β → 0 limit of zero quark and gluon mass, the k integration in
Eq. (5) can be performed analytically yielding an expression for the single
gluon x distribution

x
dNg

dx
=

4CRαs
π

L

λ

∫ qmax

0
dq
µ2

q

( (
q2L/2xE

)2
4 + (q2L/2xE)2

)

×

(
1

q2 + µ2
− 1√

(q2 − k2
max)2 + 2(q2 + k2

max)µ2 + µ4

)
.

(6)

The dependence of the spectrum on dimensionful scales can be made more
explicit by re-arranging Eq. (6) to

x
dNg

dx
=

4CRαs
π

L

λ

∫ qmax

0

dq

q

[
(q/qp)4

4 + (q/qp)4

]

×

 1

1 + q2

µ2

− 1√
(q2−k2

max)2

µ4 + 2 (q2+k2
max)

µ2 + 1

 .

(7)

where qp ≡
√

2ω/L is a factor that primarily controls the q-evolution of the
“phase” term in the integrand, the term in square brackets that comes from
the integral over ρ(z).
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The ASW-SH quenching weights [2] are based on the opacity expan-
sion formalism of [11], which reduces to the BDMPS-Z result [12–15] in an
infinitely thick medium. (We note that [16] extended [11] to include the
effects of a massive parent parton.) Taking the massless limit (β → 0) of
Eq. (1) and integrating over the θ function distribution, Eq. (3), one ar-
rives at the single inclusive gluon energy distribution implemented in the
ASW-SH quenching weights, Eq. (B. 10) of [2]:

ω
dI

dω
=

4αsCR
π

(n0L)γ
∫ ∞

0
q̃dq̃

[
q̃2 − sin q̃2

q̃4

]
×

(
1

γ + q̃2
− 1√

(κ2 + q̃2 + γ2)2 − 4κ2q̃2

)
,

(8)

where γ = ω̃c/ω, ω̃c = 1
2µ

2L, and κ =
√
ωL/2. The factor n0L is equivalent

to L/λ. In this expression, q̃ and kmax have been cast into dimensionless
form by factoring out a constant with energy units

q = q̃
√

2ω/L, kmax = κ
√

2ω/L. (9)

Implicit in the first expression for κ given above is the choice in the ASW
calculations, kmax = ω where ω is the gluon energy. To compare explicitly
the ASW radiation spectrum to the WHDG spectrum given above, we return
both q and kmax to their dimensionful form by inverting the relations in
Eq. (9). The spectrum can then be cast into a form similar to that of
Eq. (7):

ω
dI

dω
≡ xdNg

dx
=

4CRαs
π

L

λ

∫ qmax

0

dq

q

[
1− sin ((q/qp)2)

(q/qP )2

]

×

 1

1 + q2

µ2

− 1√
(q2−k2

max)2

µ4 + 2 (q2+k2
max)

µ2 + 1

 .

(10)

This result is identical in form to the WHDG result except for the term in
square brackets which differs from the WHDG form in Eq. (7) due to the
different choice for ρ(z). However, we caution that in converting ωdI/dω
to dNg/dx we assumed ω = xE, as is done in [11]. On the other hand
recall from Eq. (2) that x in the DGLV formalism is used to specify the
fraction of jet plus momentum taken away by the radiated gluon. So while
the x distributions in the ASW and WHDG formalisms are identical in form
modulo the difference in the phase factor, they actually represent the distri-
bution of different, though related, quantities. This difference has important
consequences for the choice of kmax, as discussed further below.
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It is interesting to note that of the two dimensionful parameters one
would expect the q-integrand to depend on, the Debye screening µ and
the formation time τform = ω/k2, only the first appears. Rather the shift-
ing of the q integral used in deriving both Eq. (5) and Eq. (8) results in
qp ≡

√
2ω/L being the second dimensional parameter affecting the dNg/dx

distribution. It is also worth observing that both ASW and WHDG expres-
sions for dNg/dx to leading order in opacity depend linearly on L/λ. Since
λ = 1/ρσ, there is a factor of the in-medium jet scattering cross-section
which implicitly contains two additional powers of αs.

The single-gluon spectrum depends not only on the input matrix ele-
ment, which (due to the small x � 1 limit in which it was derived) knows
nothing of the kinematics, but also on the permitted phase space. This is
implemented in the upper limits of the k and q integrals in Eq. (5) and
Eq. (8). WHDG sets qmax =

√
3µE because this is the maximum momen-

tum transfer between a parton of energy E and one of 3T . Setting qmax =∞
in ASW-SH is consistent with the change in integration variables performed
in deriving Eq. (8). As will be shown below, this different choice of qmax has
little effect on the jet energy loss.

It turns out that energy-momentum conservation is enforced in the cutoff
of the k⊥ integration. Naively one may expect that setting kmax = xE, as is
done in ASW-SH, would be sufficient. As one can see from any of the dNg/dx
figures, though, the single gluon spectrum does not naturally tend to 0 as x
tends to 1 in this case; there is nonzero support for a single gluon to emerge
with energy larger than that initially held by the parent parton. Not only
does this large x behavior violate energy conservation, but it also violates the
eikonal approximation (which assumes that the parent parton continues on
a nearly straight-line path and gluons are radiated in the forward direction).
WHDG enforces the assumed eikonality (p+ � p− and k+ � k−, where p is
the final momentum of the parent parton—see Fig. 1) by cutting off the k⊥
integration at approximately p+ = p− and k+ = k− with kmax = 2x(1−x)E.
This leads, as one can see in the comparison plots Fig. 8 and on, to a single
gluon spectrum that truly has no support for x > 1, consistent with energy
conservation.

The integral of dNg/dx over x gives the average number of emitted glu-
ons,

〈Ng〉 =
∫
dx
dNg

dx
. (11)

The WHDG gluon spectrum with kmax = 2x(1 − x)E has no support for
x > 1, and the upper limit of integration for Eq. (11) is therefore x = 1.
The ASW spectrum does have support for x > 1, and ASW-SH takes the
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upper limit of integration to be x =∞. The expressions for dNg/dx above
are inclusive expressions; there is no requirement that only one gluon be
emitted. Multiple radiated gluons have so far been treated by assuming
independent emissions. A Poisson distribution whose mean is 〈Ng〉 controls
the number of emitted gluons, and the probability distribution of fractional
momentum loss ε, P (ε), where the final momentum of the parent parton is
related to the initial momentum by pf⊥ = (1− ε)pi⊥, is found by performing
convolutions over x.

As will be seen more explicitly below the independent emission assump-
tion in the Poisson convolution, which in part assumes that all the radiated
gluons come from a parent parton of energy E, violates energy conservation.
There are a number of options for dealing with this probability overflow but
the two most common are to “reweigh” and to “truncate” [17]. Reweighing
evenly redistributes the excess probability over the distribution for ε < 1:

Preweighed(ε) =
Poriginal(ε)

1−
∫∞
1 dε′Poriginal(ε′)

θ(ε− 1). (12)

Truncating places all the excess probability into a delta function centered
at ε = 1:

Pshovel = Poriginal(ε)θ(ε− 1) + δ(ε− 1)
∫ ∞

1
dε′Poriginal(ε′). (13)

It was shown in [18] that relative branching, a method that is an improve-
ment over both reweighing and truncation, produces results closely resem-
bling truncation. In addition to being unphysical, redistributing the excess
probability evenly gives excess weight to the low-ε probabilities which—due
to the steeply falling spectrum in calculations for, e.g. RAA—will dispropor-
tionately affect the results. In this note we will only employ the truncation
method.

In the ASW-SH formalism, the convolution is performed over the gluon
energy spectrum dI/dω to produce a distribution of jet energy loss ∆E. The
Laplace transform and its properties are exploited to evaluate the convolu-
tion; the sum is calculated in a single step as part of the transform and the
inverse transform directly gives P (∆E), which can be re-cast as P (ε). Since
the dNg/dx spectrum for ASW-SH does not go to zero as x→ 1 we expect
the nonzero support for ε > 1 in its P (ε) convolution to be larger than for
WHDG.

In the WHDG approach the Poisson convolution is performed iteratively:

P (ε) =
∑
n

Pn(ε), (14)
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where

P0(ε) = e−〈Ng〉δ(ε)

= P 0δ(ε)
(15)

P1(ε) = e−〈Ng〉dNg

dx
(ε)θ(1− ε) + P 1

1 δ(ε− 1)

= P̃1(ε) + P 1
1 δ(ε− 1)

...

Pn(ε) =
1
n

∫ 1

0
dxP̃n−1(x)P̃1(ε− x)θ(1− ε) + P 1

nδ(ε− 1)

= P̃n(ε) + P 1
nδ(ε− 1),

(16)

and the probability overflow is found from the normalization condition

P 1
n =

e−〈Ng〉〈Ng〉n

n!
−
∫ 1

0
dεP̃n(ε). (17)

While P 1
n6=1 6= 0 in general note that with the WHDG kmax = 2x(1 − x)E

the single inclusive distribution has no support for x > 1, and P 1
1 = 0

by construction. Nevertheless we have explicitly included the term here
for comparison to the ASW-SH results whose single inclusive spectrum is
nonzero for x > 1 (and therefore P 1

1 6= 0).
With these conventions Eq. (14) becomes

P (ε) = P 0δ(ε) +
∑
n=1

P̃n(ε) +
∑
n=1

P 1
nδ(ε− 1)

= P 0δ(ε) + P̃ (ε) + P 1δ(ε− 1).
(18)

We will denote the three contributions to the probability of energy loss
P (ε) direct, continuous, and overflow corresponding to P 0, P̃ (ε), and P 1,
respectively; the direct and overflow parts will be called the discrete part
of the probability distribution. In principle, the upper limit of the sums
over n is nmax =∞, but the Possion probability P (Ng) naturally cuts off
contributions from n� 〈Ng〉. In practice the WHDG calculations truncate
the sum once the change in norm of P (ε) is guaranteed to be below some
small, predetermined value.

3 Analysis Technique

To evaluate the origin of differences between the WHDG and ASW lead-
ing order opacity results, we have modified the WHDG dNg/dx formula to
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explicitly match the ASW form. Specifically this means

• Set the thermal gluon mass to 0.

• Set the thermal quark mass to 0.

• Use kmax = xEjet.

• Use the ASW scattering center distribution, Eq. (3).

• Fix L/λ = 1.

• Use qmax =∞.

• Use αs = 1/3.

We call this configuration of WHDG WHDG-ASWExact and will show below
that it reproduces the ASW-SH results to within the numerical precision of
the calculations. We will then undo the changes to the WHDG formula one
step at a time to show the evolution back to the original WHDG results.
Figs. 3-10 visualize this unfolding of effects: black curves represent the ASW-
SH output, red curves the current WHDG iteration, and blue curves the
WHDG iteration from the previous figure (included to make the step-by-
step differences more apparent). Table 1 quantifies the differences between
configurations of the calculation by providing the values of: the average
number of emitted gluons, 〈Ng〉; the average gluon x, 〈x〉; the direct term in
P (ε), P 0; the overflow term P 1; and the average fractional energy loss 〈ε〉.

For all of the studies in this note we will use parameters T = 485 MeV,
L = 2 fm, and Ejet = 10 GeV. WHDG takes µ = gT , and we use this value
as an input in the ASW-SH code. For αs = 1/3 this gives µ ' 0.99 GeV,
and αs = 0.3 yields µ ' 0.94 GeV. For L/λ not fixed WHDG uses λ = 1/ρσ
with σ = 9πα2

s/2µ
2; for αs = 0.3 then λ ' 0.62 fm.

To perform these comparisons we have used three different methods to
evaluate the single gluon spectrum and P (ε):

1. A C++ interface to the public ASW quenching weights code.

2. WHDG calculations including modifications described above using
Mathematica performed by WAH.

3. Independent numerical calculations of the single gluon spectrum and
P (ε) implemented in C++ code by BAC with all possible combinations
of modifications appearing in the above list.
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Since the ASW quenching weights code does not provide the single gluon
distribution, the dNg/dx results shown below for the ASW-SH calculation
are obtained using BAC’s code evaluating exactly the integral in Eq. (10).
To evaluate the consistency between the new numerical calculations imple-
mented by BAC and the original ASW quenching weights code, we show
in Fig. 2, a comparison of the quark quenching weight, P (ε) for L = 2 fm,
µ = 0.993 GeV and using the ASW limits and phase factor in evaluating
dNg/dx. The agreement between the original ASW results and the new
numerical results is good though not perfect. The continuous quenching
weight matches exactly over the entire x range, but there is a 2% disagree-
ment in the discrete quenching weight and factor of two difference between
the (small) overflow terms. We note, however, that the Poisson convolution
is performed differently by ASW and the numerical code which uses the
iterative approach described above. The differences between the two cal-
culations in the overflow region likely results from the different approaches
used to evaluate the convolution.

Figure 2: Comparison of ASW-SH (black) and new numerical code evaluation of
quark quenching weight for L = 2 fm, E = 20 GeV, µ = 0.993 GeV and using a
configuration of the numerical code that matches the ASW integration limits and
phase factor in evaluating dNg/dx.
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4 ASW-SH, WHDG Comparisons

The comparison of the ASW-SH and WHDG-ASWExact results for the
gluon spectrum and quenching weights are given in Fig. 3. These results
are obtained for αs = 1/3 in contrast with the remaining WHDG calcula-
tions performed for αs = 0.3. Aside from slight differences attributed to the
discrete binning in the ASW-SH quenching weights code, the results are in
good agreement. Table 1 shows values for total number of emitted gluons,
average gluon x, and the discrete quenching weights for both calculations
for all WHDG configurations including WHDG-ASWExact. The differences
in these quantities are at the level of numerical precision.

Most of the WHDG calculations have historically been performed with
αs = 0.3 instead of αs = 1/3. For fixed L/λ dNg/dx is linear in αs, and the
effects of this change are expected to be modest. We show in Fig. 4 the
results of changing to αs = 0.3 in the WHDG calculation and leaving all
other aspects of the WHDG calculation the same as for WHDG-ASWExact.
We call this configuration WHDG-αs. As can be seen from the figure and
from Table 1 the slight decrease in coupling constant produces an overall
multiplicative reduction in the continuous quenching weight and a slight
increase in the discrete weight at zero.

The expressions for the single gluon spectrum above require an integra-
tion over q the momentum transfer from the scattering center. the ASW-SH
and WHDG calculations treat the upper limit on this integral, qmax, differ-
ently. ASW-SH takes qmax =∞ while WHDG takes qmax =

√
3µE. To eval-

uate the effect of this difference, we start from the WHDG-αs and restore
the WHDG value for qmax. The results of this configuration, WHDG-qmax,
are shown in Fig. 5. As the results in the figure indicate, the difference
resulting from the choice of qmax are barely visible.

As noted above, the first order in opacity result for the gluon spectrum
is proportional to L/λ. The ASW-SH quenching weights calculation uses
L/λ = 1. The above WHDG results have been obtained for L/λ = 1 to
match the ASW-SH calculations. We show in Fig. 6 the result of restor-
ing the the L/λ factor. The resulting configuration, WHDG-L/λ, is other-
wise identical to WHDG-αs. For the chosen parameters of the calculation,
T = 485 MeV and αs = 0.3, the quark mean free path is λ = 0.62 yielding
L/λ = 3.2. The gluon spectrum in the figure shows the approximately fac-
tor of three increase in magnitude due to the L/λ factor. The quenching
weights show a corresponding decrease in the discrete weight at ε = 0 and an
increase in the scale of the continuous quenching weight. The increase in the
number of emitted gluons also increases the overflow term in the quenching
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weight so that roughly 20% of the probability distribution corresponds to
ε > 1.

The next feature of the original WHDG calculation that we return is
the exponential distribution of scattering centers, accomplished by restoring
the factor in the square bracket in Eq. (7); we label this change WHDG-
ExpPhase. Since the exponential distribution weights the probability of
scattering close to the production point more as compared to the theta
distribution (even though the average distance is the same) we expect the
destructive interference associated with the smaller x, more collinear gluons
to increase. This is what we see in Fig. 7. The modification of the phase
factor has a modest impact on the gluon spectrum with the largest effect near
its peak at small x. The exponential phase reduces the overall number of
gluons by ≈ 10%, but it also makes the gluon distribution flatter, increasing
the relative yield in the unphysical region x > 1.

The next step in evolving back, configuration WHDG-Kmax, involves
replacing kmax = ω with kmax = 2x(1− x)Ejet. As discussed above, this
change has the feature that it forces the single gluon spectrum to zero at
x = 1; nevertheless the convolution for multiple gluon emissions still gen-
erates non-zero probability for ε > 1. The additional factor of two is also
worth noting as it opens up the phase space for gluon emission even in the
region x� 1. We will return to investigate the impact of this factor of two
below. The results of WHDG-Kmax compared to the ASW-SH quenching
weights are shown in Fig. 8. The change in the upper limit of the K⊥ inte-
gration produces a large increase in the number of emitted gluons and the
continuous quenching weights at small x along with the expected truncation
of the dNg/dx at x = 1. This truncation of the gluon distribution at the
kinematic limit substantially reduces the quenching weight at x = 1 com-
pared to WHDG-ExpPhase even though the overall gluon yield increases by
more than a factor of two.

The next step in restoring the original WHDG calculation is to re-
introduce quark and gluon thermal masses. We first show results for non-
zero quark mass (WHDG-QuarkMass) in Fig. 9. The non-zero quark masses
produce negligible change in the gluon spectrum and quenching weights com-
pared to the WHDG-Kmax calculations. However, calculations with non-
zero gluon mass (WHDG-Massive) shown in Fig. 10 show a very different
result. The gluon mass produces nearly a factor of three suppression of the
radiated gluon spectrum at the peak while producing very little change in
the spectrum for x > 0.3. Thus, the incorporation of the gluon mass hardens
the spectrum while reducing the overall gluon yield by 40%.
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dNg/dx Convolution
WHDG Config 〈Ng〉 〈xg〉 P 0 P 1 〈ε〉
ASW-SH 0.29 0.48 0.73 0.06 0.12
WHDG-ASWExact 0.31 0.50 0.74 0.08 0.14
WHDG-QMax 0.25 0.46 0.78 0.05 0.11
WHDG-Alphas 0.26 0.49 0.77 0.07 0.12
WHDG-LOverLambda 0.81 0.46 0.45 0.17 0.31
WHDG-ExpPhase 0.76 0.47 0.47 0.17 0.30
WHDG-Kmax 1.08 0.18 0.34 0.01 0.19
WHDG-QuarkMass 1.11 0.18 0.33 0.01 0.20
WHDG-ThermalMasses 0.74 0.24 0.48 0.01 0.17
ASW-2xE 0.61 0.33 0.55 0.05 0.35
ASW-ExpPhase 0.28 0.52 0.75 0.03 0.45
ASW-LOverLambda 1.03 0.48 0.36 0.19 0.58

Table 1: Table of quantities characterizing the results from the different WHDG
configurations and the ASW-SH quenching weights. Those from the single inclusive
distribution are defined as 〈Ng〉 =

∫
dx dNg/dx and 〈xg〉 =

∫
dxx dNg/dx. Those

resulting from the convolution are the discrete, P 0, and continuous, P 1, parts of the
P (ε) distribution—Eq. (15) and Eq. (18), respectively—and the average fractional
energy loss, 〈ε〉 =

∫
dε ε P (ε).
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Figure 3: Comparison of ASW-SH (black) and WHDG-ASWExact (red) gluon
spectra (top) and quenching weights (bottom). For the quenching weights, the
solid curves show the continuous quenching weights while the open (solid) circles
show the ASW-SH (WHDG) discrete quenching weights at x = 0 and x = 1
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Figure 4: Comparison of ASW (black), WHDG-αs (red), and WHDG-ASWExact
(blue) gluon spectra (top) and quenching weights (bottom). For the quenching
weights, the solid curves show the continuous quenching weights while the open
(solid) circles show the ASW (WHDG) discrete quenching weights at x = 0 and
x = 1
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Figure 5: Comparison of ASW-SH (black), WHDG-qmax (red), and WHDG-αs

(blue) gluon spectra (top) and quenching weights (bottom). For the quenching
weights, the solid curves show the continuous quenching weights while the open
(solid) circles show the ASW-SH (WHDG) discrete quenching weights at x = 0 and
x = 1
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Figure 6: Comparison of ASW-SH (black), WHDG-L/λ (red), WHDG-qmax (blue)
gluon spectra (top) and quenching weights (bottom). For the quenching weights,
the solid curves show the continuous quenching weights while the open (solid) circles
show the ASW-SH (WHDG) discrete quenching weights at x = 0 and x = 1
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Figure 7: Comparison of ASW-SH (black), WHDG-ExpPhase (red), and
WHDG-L/λ (blue) gluon spectrum (top) and quenching weights (bottom). For the
quenching weights, the solid curves show the continuous quenching weights while
the open (solid) circles show the ASW-SH (WHDG) discrete quenching weights at
x = 0 and x = 1
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Figure 8: Comparison of ASW-SH (black), WHDG-Kmax (red), and
WHDG-ExpPhase (blue) gluon spectra (top) and quenching weights (bottom). For
the quenching weights, the solid curves show the continuous quenching weights while
the open (solid) circles show the ASW-SH (WHDG) discrete quenching weights at
x = 0 and x = 1
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Figure 9: Comparison of ASW-SH (black), WHDG-QuarkMass (red), and
WHDG-Kmax (blue) gluon spectra (top) and quenching weights (bottom). For the
quenching weights, the solid curves show the continuous quenching weights while
the open (solid) circles show the ASW-SH (WHDG) discrete quenching weights at
x = 0 and x = 1

20



Figure 10: Comparison of ASW-SH (black), WHDG-Orig (red) gluon, and
WHDG-QuarkMass (blue) spectra (top) and quenching weights (bottom). For the
quenching weights, the solid curves show the continuous quenching weights while
the open (solid) circles show the ASW-SH (WHDG) discrete quenching weights at
x = 0 and x = 1
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5 Further studies

The above analysis quantifies the numerical differences arising between ASW-
SH quenching weight and WHDG implementations by starting from WHDG-
ASWExact (WHDG altered to reproduce ASW-SH) and successively remov-
ing these modifications. However, a direct evaluation of the impact of the
most significant changes in the calculation would also be helpful. To this
end, we present here results using the numerical code by BAC of the modi-
fications to the gluon spectrum and P (ε) resulting from changes to a single
parameter or aspect of the calculation. In all cases, we start from the default
ASW calculation with L = 2 GeV, Ejet = 20 GeV, αs = 1/3 and µ = 0.993
GeV.

We start by evaluating the impact of the factor of two in the WHDG
kmax by comparing in Fig. 11 results for the default ASW calculation to
those obtained with kmax = 2xE. The figure shows that a factor of two
change in the upper limit of the k integration produces a factor of ∼ 4
change in the gluon spectrum at low x and a factor of ∼ 3 increase in the
continuous quenching weight at low ε. At large x and ε, respectively, the
gluon spectrum and quenching weights have only modest sensitivity to this
change in kmax.

To directly evaluate the impact of the change in the phase factor in
the q integral, we show in Fig. 12 a comparison between the default ASW
calculation and the result obtained with the GLV/WHDG phase function.
The gluon spectra from the two calculations differ significantly only at the
peak of the gluon spectrum and then only by 20%. The change in the phase
factor has little or no impact on the gluon spectrum or the quenching weight
for x or ε larger than 0.1. Fig. 12 provides a refinement on the conclusions
drawn from Fig. 7 where the calculations used a finite qmax.

For completeness, we show in Fig. 13 a comparison between the default
ASW calculation and one with a non-unity L/λ factor, where λ ' 0.558 fm
corresponds to α = 1/3 and T = 485 MeV. The resulting L/λ ' 3.6 factor
simply multiplies the single gluon spectrum dNg/dx; while 〈Ng〉 increases,
〈xg〉 is unaffected (see Table 1). However this trivial change in normalization
of the single gluon spectrum has a highly nontrivial result in P (ε): the
Poisson convolution now weighs its individual Pn contributions differently.
In particular as 〈Ng〉 ∼ 1 instead of� 1 the much broader P2 term becomes
significant, and the large x region of dNg/dx becomes more important; we
will explore this in more detail below. Quantitatively, the result is a factor of
∼ 2 increase in the continuous quenching weight and a factor of ∼ 2 decrease
in the discrete quenching weight at x = 0. The increase in the amplitude
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Figure 11: Comparison of gluon spectrum (top) and P (ε) (bottom) between de-
fault ASW calculation and a calculation with kmax = 2xE obtained using the
numerical code by BAC.
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Figure 12: Comparison of gluon spectrum (top) and P (ε) (bottom) between de-
fault ASW calculation and a calculation using the GLV/WHDG phase function.
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of the gluon spectrum exacerbates the violation of energy conservation in
the convolution; as shown in Table 1, the overflow contribution P 1 increases
by more than a factor of ∼ 3. As will be shown below, the proportionately
larger increase in P 1 compared to P (ε) at the peak is due to the multiple
gluon convolution in the quenching weight calculation and the increase in
the average number of emitted gluons resulting from the inclusion of the
L/λ factor.

The derivation of the emission spectrum for both ASW and DGLV uses
the soft gluon, or small x, approximation. This assumption is generally a
posteriori justified by the high peaking of the spectrum for small values of x.
However when 〈Ng〉 & 1 the Poisson approximation of multiple gluon emis-
sion, which convolves dNg/dx with itself over all x, induces a sensitivity in
P (ε) at large ε to the shape of the dNg/dx spectrum at large x; recall from
Eq. (17) that the Pn contributions are normalized to exp(−〈Ng〉)〈Ng〉n/n!,
and hence Pn makes an important contribution to P (ε) for n ∼ 〈Ng〉. In
particular the sensitivity of the quenching weight calculation to large-x con-
tributions increases if the amplitude of the gluon spectrum is increased, even
if the shape of the spectrum is left unchanged. To see this quantitatively
we show in Fig. 14 a breakout of the n = 1 and n = 2 contributions to
the quenching weight compared to the complete quenmching weight for the
default ASW calculation (with 〈Ng〉 ' 0.29). For that calculation, the n = 1
term clearly dominates. The n = 2 contribution to the quenching weight,
resulting from a single convolution of the single gluon spectrum, is both
sufficiently broad and small in normalization that it only contributes in the
region ε & 0.15, and at a small level.

Since the size of the n = 2 term and higher n terms in the Poisson
convolution is determined by 〈Ng〉, if the single gluon spectrum is increased
significantly, the contributions of the n > 1 terms to the quenching weight
becomes more important. To illustrate this behavior, we show in Fig. 15 the
contribution of the n = 1, n = 2, and n = 3 terms to the complete quenching
weight for the ASW calculation incorporating the L/λ ' 3.6 factor shown in
Fig. 13 (with 〈Ng〉 ' 1.04). The n = 2 term contributes significantly to the
quenching weight for ε > 0.2 while the small n = 3 term contributes little
and only in the region ε > 0.3. Note that the severe broadening of the n = 2
and n = 3 terms in the Poisson convolution is largely due to the tail of the
gluon dN/dx spectrum to large x, and we see quantitatively the importance
of the large x region of dNg/dx in determining the large ε behavior of the
quenching weight P (ε).
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Figure 13: Comparison of gluon spectrum (top) and P (ε) (bottom) between de-
fault ASW calculation with L/λ = 1 and a calculation with L/λ ' 3.6 obtained
using the numerical code by BAC.
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Figure 14: Breakout of the n = 1 (red) and n = 2 (blue) contributions to the
complete quenching weight (black) for the default ASW calcualtion with L/λ = 1.

Figure 15: Breakout of the n = 1 (red), n = 2 (blue), and n = 3 (purple)
contributions to the complete quenching weight (black) for the ASW calcualtion
incorporating a real L/λ factor (L/λ = 3.6).
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6 Conclusions

From the above analysis, there are three major differences between the
ASW-SH calculations as implemented in the quenching weights code and
the WHDG calculations that lead to significant modifications to the radi-
ated gluon spectrum. These are

• The explicit choice of L/λ = 1 in ASW-SH quenching weights.

• The upper limit of the k integration, in particular the factor of 2 in
the WHDG choice 2x(1− x)E.

• The incorporation of the gluon mass in the WHDG calculations.

Despite the significant variation in form induced by the different scattering
center distributions, the change produced a much smaller variation in the
gluon spectrum than the three listed above. However, there may be an
interaction between changes in the phase parameter and the choice of qmax;
further investigation of this possibility is currently underway. Of the three
sources of difference between the ASW-SH and WHDG calculations, the first
was expected. The choice by ASW of a particular L/λ to best match their
soft multiple scatter results is explicitly discussed in their paper. However,
in the context of the TECHQM effort and the brick studies it is clear that
fixing L/λ = 1 dramatically alters the results of the calculations for a given
choice of µ, L, and Ejet.

The magnitude of the modifications from the second and third items
comes as a surprise. The discussions of the upper limit of the k integral
have primarily focused on the 1 − x factor. The physics implications of
that term providing a cut-off of the gluon spectrum are clearly of interest.
However, we conclude that the difference of the factor of between xE and
2x(1 − x)E is of much greater significance and impact on the quenching.
This change increases the gluon yield at the maximum of the spectrum by
nearly a factor of three, though the increase in the total number of emitted
gluons is more modest due to the decrease in gluon yield at large x. In this
study the difference of the factor of two results from the implicit or explicit
assumptions regarding the definition of x. In general, though, one would
have hoped that the spectra would be insensitive to the exact value of the
cutoffs, which are at best known up to some O(1) factor. At this point these
large effects resulting from the imprecise knowledge of the kinematics and ra-
diated gluon mass are a systematic theoretical uncertainty. Clearly reducing
these uncertainties and resolving the difference in theoretical interpretation
is a high priority.
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