WHDG Brick and Comparing WHDG to ASW-SH

William Horowitz

The Ohio State University
July 7, 2009

With many thanks to Brian Cole, Ulrich Heinz, and Yuri Kovchegov

Outline

- Context
- Pedagogy
- (Some) brick results
- Comparing WHDG to ASW-SH
- Pedagogy
- Surprise!
- Conclusions

pQCD Success at RHIC:

(circa 2005)
Y. Akiba for the PHENIX collaboration,

- Consistency: $R_{AA}(\eta) \sim R_{AA}(\pi)$

hep-ex/0510008

- Null Control: $R_{AA}(\gamma) \sim 1$

– GLV Prediction: Theory~Data for reasonable fixed L~5 fm and $dN_g/dy~dN_\pi/dy$

Trouble for High-p_T wQGP Picture

 $-v_2$ too small

C. Vale, QM09 Plenary (analysis by R. Wei)

7/7/09

- NPE supp. too large

STAR, Phys. Rev. Lett. 98, 192301 (2007)

Pert. at LHC energies?

William Horowitz

TECHQM @ CERN

Multiple Models

WHDG, Nucl. Phys. A784:426-442,2007

Bass et al., Phys.Rev.C79:024901,2009

- Inconsistent medium properties

$\hat{q}(ec{r}, au)$	$\mathbf{A}\mathbf{S}\mathbf{W}$	HT	AMY
scales as	\hat{q}_0	\hat{q}_0	\hat{q}_0
$T(\vec{r}, au)$	$10~{ m GeV^2/fm}$	$2.3~{ m GeV^2/fm}$	$4.1~{ m GeV^2/fm}$
$\epsilon^{3/4}(\vec{r}, au)$	$18.5~{ m GeV^2/fm}$	$4.5~{ m GeV^2/fm}$	
$s(ec{r}, au)$		$4.3~{ m GeV^2/fm}$	

Distinguish between models

Bass et al.

Quantitative Parameter Extraction

 Vary input param. • Find "best" value 0.6 PHENIX π⁰ (Au+Au 0-5% Central) Global Systematic Uncertainty ±12% 36 0.4 25 0.3 0.2 0.1E Need for theoretical error R_{AA} [p = 20 (GeV/c)] 0.02 Away from Best Value 0.1 1000 1200 1400 1600 1800 2000 2280 1000 2000 3000 4000 5000 GLV Model dNº/dy

William Horowitz

PHENIX, PRC77:064907,2008

GLV Model dNg/dy

pQCD Rad. Opacity Exp. (I)

- All orders in L/λ expression for dN_g/dx
 - N_g : number of emitted gluons
 - *x*: "momentum fraction carried by gluon"
 - Small x regime, x << 1
 - Assumed length scales: $\mu^{-1} << \lambda << L$
 - Debye screening mass μ
 - Mean free path λ
 - Medium length *L*
 - Localized scattering centers; partons see many centers and radiate coherently (crucial!)

pQCD Rad. Opacity Exp. (II)

- Eikonality assumed
 - $p^+ >> p^-$
 - k⁺ >> k⁻

- Radiation emitted forward
- Parent parton continues moving forward
- Partons move on straight-line paths

First order in opacity

Interference w/ vacuum rad. crucial

$FOO dN_g/dx$

$$x\frac{dN_g^{\text{GIV}}}{dx} = \frac{C_R\alpha_s}{\pi}\frac{L}{\lambda}\int\frac{d^2\mathbf{q}}{\pi}\frac{\mu^2}{\left(\mathbf{q}^2+\mu^2\right)^2}\int\frac{2d^2\mathbf{k}}{\pi}\frac{\mathbf{k}\cdot\mathbf{q}(\mathbf{k}-\mathbf{q})^2}{\mathbf{k}^2(\mathbf{k}-\mathbf{q})^4}\int dz\left[1-\cos\left(\frac{(\mathbf{k}-\mathbf{q})^2}{2Ex}z\right)\right]\rho(z)$$

$$\rho(z) = \begin{cases} \frac{1}{L}\theta(L-z)\\ \frac{2}{L}\exp(-2z/L) \end{cases}$$

$$x\frac{dN_g^{\rm DGLV}}{dx} = \frac{C_R\alpha_s}{\pi}\frac{L}{\lambda}\int\frac{d^2\mathbf{q}}{\pi}\frac{\mu^2}{\left(\mathbf{q}^2+\mu^2\right)^2}\int\frac{2d^2\mathbf{k}}{\pi}\frac{\mathbf{k}\cdot\mathbf{q}(\mathbf{k}-\mathbf{q})^2-\beta^2\mathbf{q}\cdot(\mathbf{k}-\mathbf{q})}{\left[(\mathbf{k}-\mathbf{q})^2+\beta^2\right]^2\left(\mathbf{k}^2+\beta^2\right)}\int dz\left[1-\cos\left(\frac{(\mathbf{k}-\mathbf{q})^2+\beta^2}{2Ex}z\right)\right]\rho(z)$$

$$\beta^2 = x^2M^2 + (1-x)m_g^2$$

• WHDG Rad: μ , M, m_g depend on T

dN_g/dx to $P(\varepsilon)$

- Opacity expansion => dN_g/dx
 - Single gluon emission spectrum
- Approx. multi-gluon fluct. w/ Poisson conv.
 - Prob. to lose mom. frac. ε : p_f = $(1-\varepsilon)p_i$

$$\langle N_g \rangle = \int dx \frac{dN_g}{dx}$$

$$P_0(\epsilon) = e^{-\langle N_g \rangle} \delta(\epsilon)$$

= $P^0 \delta(\epsilon)$

$$P_1(\epsilon) = e^{-\langle N_g \rangle} \frac{dN_g}{dx}(\epsilon)\theta(1 - \epsilon) + P_1^1 \delta(\epsilon - 1)$$
$$= \tilde{P}_1(\epsilon) + P_1^1 \delta(\epsilon - 1)$$

$$P_n(\epsilon) = \frac{1}{n} \int_0^1 dx \tilde{P}_{n-1}(x) \tilde{P}_1(\epsilon - x) \theta(1 - \epsilon) + P_n^1 \delta(\epsilon - 1)$$
$$= \tilde{P}_n(\epsilon) + P_n^1 \delta(\epsilon - 1),$$

$$P_n^1 = \frac{e^{-\langle N_g \rangle} \langle N_g \rangle^n}{n!} - \int_0^1 d\epsilon \tilde{P}_n(\epsilon)$$

$$\begin{split} P(\epsilon) &= P^0 \delta(\epsilon) + \sum_{n=1} \tilde{P}_n(\epsilon) + \sum_{n=1} P_n^1 \delta(\epsilon-1) \\ &= P^0 \delta(\epsilon) + \tilde{P}(\epsilon) + P^1 \delta(\epsilon-1). \end{split}$$

• Assumes *incoherent emission* of <u>non-Abelian</u> gluons

WHDG Collisional Loss

- Gaussian distribution
 - Mean loss for light quarks:
 - Braaten-Thoma, PRD44, 2625 (1991)
- Width given by Fluctuation-Dissipation theorem

$$\sigma = (2/p) \int dp/dz T(z) dz$$

- Poisson conv. not well approx by Gaussian for realistic, small num of scatterings
 - See Simon Wicks' thesis

William Horowitz

Typical Results

Original Brick

• Wiedemann Brick $\langle \varepsilon \rangle = .4$

WHDG $P_{\text{rad}+el}$ (c), P_{el} (c), and P_{rad} (c)

Inelastic WHDG Single Inclusive dN_g/dx

 $< N_{\sigma} > = 0.739224, < x > = 0.179679$

WHD6 Praded (d), Pet (d), and Prad(d)

E

Running α_s ?

$$-\alpha_{\rm s} = .2, .3$$

 $-\alpha_{\rm s} = .3, .4$

WHDG P_{conv} , P_{el} , and P_{rad} in Red, Green, and Blue, respectively $\alpha = .3$ (solid); $\alpha = .2$ (dashed)

WHDG P_{conv} , P_{el} , and P_{rad} in Red, Green, and Blue, respectively $\alpha = .3$ (solid); $\alpha = .4$ (dashed)

- Not surprisingly, changes in α_s make *huge* difference to $P(\epsilon)$

WHDG thru KKP

Facilitate comparison between WHDG and HT

$FOO dN_g/dx$

$$x\frac{dN_g^{\text{GIV}}}{dx} = \frac{C_R\alpha_s}{\pi} \frac{L}{\lambda} \int \frac{d^2\mathbf{q}}{\pi} \frac{\mu^2}{\left(\mathbf{q}^2 + \mu^2\right)^2} \int \frac{2d^2\mathbf{k}}{\pi} \frac{\mathbf{k} \cdot \mathbf{q}(\mathbf{k} - \mathbf{q})^2}{\mathbf{k}^2(\mathbf{k} - \mathbf{q})^4} \int dz \left[1 - \cos\left(\frac{(\mathbf{k} - \mathbf{q})^2}{2Ex}z\right)\right] \rho(z)$$

$$\rho(z) = \begin{cases} \frac{1}{L}\theta(L - z) \\ \frac{2}{L}\exp(-2z/L) \end{cases}$$

$$x\frac{dN_g^{\rm DGLV}}{dx} = \frac{C_R\alpha_s}{\pi}\frac{L}{\lambda}\int\frac{d^2\mathbf{q}}{\pi}\frac{\mu^2}{\left(\mathbf{q}^2+\mu^2\right)^2}\int\frac{2d^2\mathbf{k}}{\pi}\frac{\mathbf{k}\cdot\mathbf{q}(\mathbf{k}-\mathbf{q})^2-\beta^2\mathbf{q}\cdot(\mathbf{k}-\mathbf{q})}{\left[(\mathbf{k}-\mathbf{q})^2+\beta^2\right]^2\left(\mathbf{k}^2+\beta^2\right)}\int dz\left[1-\cos\left(\frac{(\mathbf{k}-\mathbf{q})^2+\beta^2}{2Ex}z\right)\right]\rho(z)$$

$$\beta^2 = x^2M^2 + (1-x)m_g^2$$

• WHDG Rad: μ , M, m_g depend on T

$$x\frac{dN_g^{\text{DH}}}{dx} = \frac{C_R \alpha_s}{\pi} \frac{L}{\lambda_{\text{dyn}}} \int \frac{d^2 \mathbf{q}}{\pi} \frac{\mu^2}{\mathbf{q}^2 (\mathbf{q}^2 + \mu^2)} \int \frac{2d^2 \mathbf{k}}{\pi} \frac{\mathbf{k} \cdot \mathbf{q} (\mathbf{k} - \mathbf{q})^2 - \beta^2 \mathbf{q} \cdot (\mathbf{k} - \mathbf{q})}{\left[(\mathbf{k} - \mathbf{q})^2 + \beta^2 \right]^2 (\mathbf{k}^2 + \beta^2)} \int dz \left[1 - \cos \left(\frac{(\mathbf{k} - \mathbf{q})^2 + \beta^2}{2Ex} z \right) \right] \rho(z)$$

$$\omega \frac{dI^{\text{ASH-SH}}}{d\omega} = \frac{4\alpha_s C_R}{\pi} (n_0 L) \gamma \int_0^\infty \tilde{q} d\tilde{q} \left[\frac{\tilde{q}^2 - \sin \tilde{q}^2}{\tilde{q}^4} \right] \left(\frac{1}{\gamma + \tilde{q}^2} - \frac{1}{\sqrt{(\kappa^2 + \tilde{q}^2 + \gamma^2)^2 - 4\kappa^2 \tilde{q}^2}} \right)$$

$$\gamma = \tilde{\omega}_c/\omega, \ \tilde{\omega}_c = \frac{1}{2} \mu^2 L, \ \kappa = \sqrt{\omega L/2}, \ \text{and} \ n_0 L = L/\lambda$$

Differences

WHDG Rad

•
$$m_g = \mu / \sqrt{2}$$

•
$$M = \mu/2$$

•
$$k_{\text{max}} = 2 x (1-x) E$$

- $\rho_{\rm exp}(z)$
- $L/\lambda(T)$
- $q_{\text{max}} = \sqrt{(3 \ \mu \ E)}$
- $\alpha_{\rm s} = .3$

• ASW-SH

•
$$m_g = 0$$

•
$$M = 0$$

•
$$k_{\text{max}} = x E$$

•
$$\rho_{\text{theta}}(z)$$

•
$$L/\lambda = 1$$

•
$$q_{\text{max}} = \infty$$

•
$$\alpha_{\rm s} = 1/3$$

Where Did k_{max}'s Come From? (I)

DGLV

Light cone momenta

$$P = (E, E, 0, 0) = [E^{+}, 0, 0]$$

$$k = [x_{+}E^{+}, \frac{\mathbf{k}_{\perp}^{2}}{x_{+}E^{+}}, \mathbf{k}_{\perp}]$$

$$p = [(1 - x_{+})E^{+}, \frac{(\mathbf{q}_{\perp} - \mathbf{k}_{\perp})^{2}}{(1 - x_{+})E^{+}}, \mathbf{q}_{\perp} - \mathbf{k}_{\perp}]$$

- Note x_+ def.!
- Always on-shell

$$x_{+} = \frac{x_{E}}{2} \left(1 + \sqrt{1 - \left(\frac{k_{\perp}}{x_{E}E}\right)^{2}} \right)$$

ASW-SH

- 4-momenta

$$\begin{split} P &= (E, E, 0) \\ p &= ((1 - x_E)E, \sqrt{((1 - x_E)E)^2 - (\mathbf{q} - \mathbf{k})^2}, \mathbf{q} - \mathbf{k}) \\ k &= (x_E E, \sqrt{(x_E E)^2 - \mathbf{k}^2}, \mathbf{k}) \end{split}$$

- Note x_E def.!
- Always on-shell

$$x_E = x_+ \left(1 + \left(\frac{k_\perp}{x_+ E^+} \right)^2 \right)$$

The same in the eikonal limit!

Where Did k_{max}'s Come From? (II)

DGLV

- Light cone momenta

$$P = (E, E, 0, 0) = [E^+, 0, 0]$$

$$k = [x_+ E^+, \frac{\mathbf{k}_\perp^2}{x_+ E^+}, \mathbf{k}_\perp]$$

$$p = [(1 - x_{+})E^{+}, \frac{(\mathbf{q}_{\perp} - \mathbf{k}_{\perp})^{2}}{(1 - x_{+})E^{+}}, \mathbf{q}_{\perp} - \mathbf{k}_{\perp}]$$

- Note x_+ def.!
- Always on-shell

$$k^{+} \gg k^{-} \Rightarrow x_{+}E^{+} \gg k_{\perp}$$

$$p^{+} \gg p^{-} \Rightarrow (1 - x_{+})E^{+} \gg |\mathbf{q}_{\perp} - \mathbf{k}_{\perp}| \approx k_{\perp}$$

$$- k_{T} < \mathbf{x}_{+} E^{+} = 2 x_{+} E$$

$$E = x_{+} = x_{+}^{-1} + x_{+} = 1$$

Forward travel

ASW-SH

- 4-momenta

$$P = (E, E, 0)$$

$$p = ((1 - x_E)E, \sqrt{((1 - x_E)E)^2 - (\mathbf{q} - \mathbf{k})^2}, \mathbf{q} - \mathbf{k})$$

$$k = (x_E E, \sqrt{(x_E E)^2 - \mathbf{k}^2}, \mathbf{k})$$

- Note x_E def.!
- Always on-shell

$$k^z > 0 \implies x_E E > k_{\perp}$$

$$p^z > 0 \implies (1 - x_E)E > |\mathbf{q}_{\perp} - \mathbf{k}_{\perp}| \approx k_{\perp}$$

$$- k_T < \mathbf{x}_E E$$

Forward travel

Same physics: cutoff when gluons radiated at 90°

Compare Apples to Apples

• Differences must be due to non-eikonality

$$\frac{dN^{\text{ASW-SH}}}{dx_E}(x_E) = \int_0^{q_{\text{max}}} dq \int_0^{x_E E} dk \frac{dN^{\text{ASW-SH}}}{dx_E dq dk}(x_E; k, q)$$

$$\frac{dN^{\text{GIV}}}{dx_E}(x_E) = \int_0^{q_{\text{max}}} dq \int_0^{x_E E} dk \frac{dx_+}{dx_E}(x_E; k) \frac{dN^{\text{GIV}}}{dx_+ dq dk} (x_+(x_E); k, q)$$

Large E Limit

- GLV(x_E) in red; ASW-SH(x_E) in blue
- For most values of x, naïve interpretation holds
 - What's going on at small x?

Interpretation

Physically:

- Typical $k_T \sim \mu => \text{typ. } \omega \sim \mu$
 - System wants to radiate lots of glue at $x \sim \mu / E$
 - *BUT*, this is right at our k_T cutoff:
 - $k_T \sim \mu < \mu \sim k_{T. max}$: the system will always take advantage of all the "phase space" we give it

Analytically:

- More natural way to write
$$dN_g/dx$$

$$\frac{dN_g}{dx} = \frac{4\alpha_s C_R L}{\pi \lambda} \int d\bar{q} \frac{\bar{q}^3}{\bar{q}^4 + (4x/\bar{\gamma})^2} \left(\frac{1}{\bar{q}^2 + 1} - \frac{1}{\sqrt{\left[(\bar{k}_{\max} - \bar{q})^2 + 1\right] \left[(\bar{k}_{\max} + \bar{q})^2 + 1\right]}} \right)$$

$$\bar{\gamma} = \mu^2 L/E$$
, $\bar{q} = q/\mu$, $\bar{k} = k/\mu$, and $\bar{k}_{\rm max} = \#xE/\mu$

$$x_{\text{max}} = \frac{\mu}{E} \ln \left(\frac{\mu^2 L}{E} \right)$$

Consequences

- At large energies, $\langle N_g \rangle$ is *E* ind.
 - Large *irreducible* systematic uncertainty for some observables
 - For T = 485 GeV, L = 2 fm, $\alpha_s = 0.3$:

•
$$\langle N_g \rangle \approx 1$$
, $k_{\text{max}} = x E$

•
$$<$$
 N_g $> \approx 2$, $k_{\text{max}} = 2 \times E$

- Note that R_{AA} becomes insensitive to details of k_{max} (goes to 1)

Conclusions

- Current phen. comparisons of pQCD to data unsatisfactory
- WHDG not oversuppressed
- Opacity expansion suffers from large systematic errors
 - Strong dependence on k_{max} = # x E
 - # is not specified by framework
 - Similar dependence on IR cutoff, m_g
 - Irreducible?
- Consequences for other models, parameter extractions?

Supplement

24

Eikonality Sets in for all *x*

TECHQM @ CERN