Brick problems in McGill-AMY

McGill-AMY Group:
Guangyou Qin, Simon Turbide, Björn Schenke, Charles Gale,
Guy D. Moore, Sangyong Jeon

Department of Physics McGill University Montreal, Canada

July 7, 2009

Plan

- AMY Method Overview
- Brick results
- Discussions

Big Picture

•
$$K \sum f_{a/A} \otimes f_{b/A} \otimes \frac{d\sigma_{ab \to cd}}{dx} \otimes (\text{E-loss module}) \otimes D_{\text{frag}}$$

- Parton-parton scattering: $\left(f_{a/A} \otimes f_{b/A} \otimes \frac{d\sigma_{ab \to cd}}{dx}\right)$
- K: By comparing the LO and Aurenche et al.'s NLO.
- D_{frag}: As in vacuum but with reduced energy.
- Energy loss module Three separate pieces
 - Energy change rate: $\frac{d\Gamma}{dtdk}(\epsilon, k; T)$
 - Evolution:

$$\frac{\textit{dP}(\epsilon,t)}{\textit{dt}} = \int \textit{dk} \frac{\textit{d\Gamma}}{\textit{dtdk}} \textit{P}(\epsilon+k,t) - \int \textit{dk} \frac{\textit{d\Gamma}}{\textit{dtdk}} \textit{P}(\epsilon,t)$$

• Space-time dependence thru $T(\mathbf{x}, t), u^{\mu}(\mathbf{x}, t)$: Must be obtained independently.

Gluon Radiation Calculation

Diagrams

Pinching poles give the leading order result.

SD equation for the vertex

$$\begin{split} 2\textbf{h} &= i\delta E(\textbf{h},\rho,k)\textbf{F}(\textbf{h}) + g^2 \int \frac{d^2\textbf{q}_\perp}{(2\pi)^2} C(\textbf{q}_\perp) \times \\ &\times \Big\{ (C_s - C_A/2)[\textbf{F}(\textbf{h}) - \textbf{F}(\textbf{h} - k \, \textbf{q}_\perp)] \\ &\quad + (C_A/2)[\textbf{F}(\textbf{h}) - \textbf{F}(\textbf{h} + \rho \, \textbf{q}_\perp)] \\ &\quad + (C_A/2)[\textbf{F}(\textbf{h}) - \textbf{F}(\textbf{h} - (\rho - k) \, \textbf{q}_\perp)] \Big\}, \\ \delta E(\textbf{h},\rho,k) &= \frac{\textbf{h}^2}{2\rho k(\rho - k)} + \frac{m_k^2}{2k} + \frac{m_{\rho - k}^2}{2(\rho - k)} - \frac{m_\rho^2}{2\rho} \,. \end{split}$$

- m²: Medium induced thermal masses.
- $\mathbf{h} = (\mathbf{p} \times \mathbf{k}) \times \mathbf{e}_{||}$ Must keep track of both \mathbf{p}_{\perp} and \mathbf{k}_{\perp} now.

6 / 44

Gluon Radiation Rate

Rate using **F**

$$\begin{array}{ll} \frac{d\Gamma_g(p,k)}{dkdt} & = & \frac{C_s g_s^2}{16\pi \rho^7} \frac{1}{1 \pm e^{-k/T}} \frac{1}{1 \pm e^{-(p-k)/T}} \times \\ & \times \left\{ \begin{array}{ll} \frac{1+(1-x)^2}{x^3(1-x)^2} & q \to qg \\ N_f \frac{x^2+(1-x)^2}{x^2(1-x)^2} & g \to qq \\ \frac{1+x^4+(1-x)^4}{x^3(1-x)^3} & g \to gg \end{array} \right\} \\ & \times \int \frac{d^2 \mathbf{h}}{(2\pi)^2} 2\mathbf{h} \cdot \operatorname{Re} \, \mathbf{F}(\mathbf{h},p,k) \,, \end{array}$$

where $x \equiv k/p$ is the momentum fraction in the gluon (or either quark, for the case $g \to qq$). $\mathbf{h} \equiv \mathbf{p} \times \mathbf{k}$: 2-D vector. $O(gT^2)$

• Correctly incorporates both the BH limit and the LPM limit.

Elastic scattering rate

Coulombic t-channel dominates

Elastic scattering rate

We need

$$\frac{dE}{dt} = \frac{1}{2E} \int_{k,k',p'} \delta^4(p+k-p'-k') (E-E') |M|^2 f(E_k) [1 \pm f(E'_k)]
= C_r \pi \alpha_s^2 T^2 \left[\ln(ET/m_g^2) + D_r \right]$$

where C_r and D_r are channel dependent O(1) constants.

Putting them together

Fokker-Planck Eqn.

$$\begin{split} \frac{dP_{q\bar{q}}(p)}{dt} &= \int_{k} P_{q\bar{q}}(p+k) \frac{d\Gamma_{qg}^{q}(p+k,k)}{dkdt} - P_{q\bar{q}}(p) \frac{d\Gamma_{qg}^{q}(p,k)}{dkdt} \\ &+ 2P_{g}(p+k) \frac{d\Gamma_{q\bar{q}}^{g}(p+k,k)}{dkdt} \,, \\ \frac{dP_{g}(p)}{dt} &= \int_{k} P_{q\bar{q}}(p+k) \frac{d\Gamma_{qg}^{q}(p+k,p)}{dkdt} + P_{g}(p+k) \frac{d\Gamma_{gg}^{g}(p+k,k)}{dkdt} \\ &- P_{g}(p) \left(\frac{d\Gamma_{q\bar{q}}^{g}(p,k)}{dkdt} + \frac{d\Gamma_{gg}^{g}(p,k)}{dkdt} \Theta(k-p/2) \right) \end{split}$$

- Inelastic part is solved as it is.
- Elastic part Soft exchange dominated.
 Implement it as either
 - (i) drag + diffusion or
 - (ii) $\Gamma = \Gamma_{\rm el} + \Gamma_{\rm inel}$

Included Physics

- Parton splitting due to scattering in the medium; the treatment includes
 - treatment of the medium as dynamical scattering, with HTL screening
 - solution of integral equation which treats the LPM effect as an O(1)
 effect, smoothly interpolating between Bethe-Heitler for low
 emission energy and strong LPM effect for high emission energy
 - Bose stimulation factors at low energies and inverse Bremsstrahlung absorption from the medium
 - medium induced dispersion corrections
- inclusion of all subsequent evolution of all daughters of a splitting process (above a cutoff energy)
- Compton-type QCD scattering, qq to gg and qg to gq
- Elastic energy loss
- All processes explicitly obey detailed balance.

McGill-AMY Brick Results

10 GeV

NOTE: Our

$$P(\epsilon) = \frac{dN}{d\epsilon}$$

It is NOT the probability density.

A 10 GeV quark propagating. Δx dependence.

14 / 44

Full implementation of elastic scattering Γ (labeled A, B) arXiv:0901.3498, Schenke, Gale, Qin

A 10 GeV quark propagating. Δx dependence. (Again, P = dN/dE)

15 / 44

A, B: Full implementation of elastic scattering Γ arXiv:0901.3498, Schenke, Gale, Qin

A 10 GeV quark propagating. Δx dependence.

P(T=300 MeV,E)

Full implementation of elastic scattering Γ (labeled A, B) arXiv:0901.3498, Schenke, Gale, Qin

A 10 GeV quark propagating. Δx dependence.

18 / 44

A 10 GeV quark propagating. T dependence. $\Delta x = 2$ fm.

10 GeV Summary

- Higher *T* more effective (of course)
- Elastic contribution significant
- Full implementation of elastic scattering is different than diffusion approx.
 - Peak does not shift away from the original energy
 - Power-law tail for small E
- Around $\Delta x = 5$ fm, the memory of the peak is almost gone for both T = 200 MeV and T = 300 MeV.

100 GeV Results

Energy dependence. 10 GeV vs. 100 GeV. $T = 200 \,\text{MeV}$.

Energy dependence. 10 GeV vs. 100 GeV. T = 300 MeV.

100 GeV. Δx dependence

24 / 44

100 GeV. Δx dependence

100 GeV. T dependence. $\Delta x = 2 \, \text{fm}$

100 GeV. T dependence. $\Delta x = 5 \, \text{fm}$

100 GeV Summary

- Net gain in $q\bar{q}$ population
 - Radiated g is hard enough for $g \to q\bar{q}$ to contribute significantly
 - May influence in-jet multiplicity distribution at LHC both $\langle N \rangle$ and $\langle \Delta N^2 \rangle$ may become larger.
- Strong low energy tail for T = 300 MeV
 - Strong presence of 20 60 GeV secondary partons Phenomenology implications? v_2 ? Photons? γ -jet correlations?

QGP vs. Gluon plasma

QGP vs. Gluon plasma – No medium quarks and no $g \to q\bar{q}$ splittings.

$$\Delta x = 2 \, \text{fm}, \ T = 200 \, \text{MeV}$$

McGill-AMY (McGill) BRICKS IN AMY TECHQM Workshop 30 / 44

QGP vs. Gluon plasma. $\Delta x = 2 \, \text{fm}, T = 300 \, \text{MeV}$

QGP vs. Gluon plasma. $\Delta x = 5$ fm, T = 200 MeV

32 / 44

QGP vs. Gluon plasma. $\Delta x = 5 \, \text{fm}, T = 300 \, \text{MeV}$

33 / 44

Gluon Plasma Summary

- Gluon plasma:
 - Density of scatterer is smaller at the same T reduces emission
 - No splitting reduces emission
 - Screening mass is smaller enhances emission
 - Thermal mass is smaller enhances emission
 - No processes involving thermal quark reduces loss
 - Overall one needs higher temperature to achieve the same amount of E-loss

Wiedemann's Brick - Fixed energy loss

Gluon dN_g/dE is almost unchanging.

Quark jet vs Gluon jet

Quark jet vs. Gluon jet. $T = 200 \,\mathrm{MeV}$, $\Delta x = 2 \,\mathrm{fm}$

McGill-AMY (McGill) BRICKS IN AMY TECHQM Workshop 37 / 44

Quark jet vs. Gluon jet. $T = 300 \,\text{MeV}$, $\Delta x = 2 \,\text{fm}$

Quark jet vs. Gluon jet. $T = 200 \,\text{MeV}$, $\Delta x = 5 \,\text{fm}$

Quark jet vs. Gluon jet. $T = 300 \,\text{MeV}$, $\Delta x = 5 \,\text{fm}$

Gluon Jet Summary

• As expected: Gluons lose energy much quicker than the quarks Leaves very strong $q\bar{q}$ remnant.

MARTINI

(Schenke, Gale, Jeon) MC Event Generator based on PYTHIA 8.1 and McGill-AMY. Preliminary, but getting there.

Brick problem verification.

Quark, 1 fm.

Pion R_{AA}

Summary for the Brick problem

McGill-AMY:

- Thermal QCD based approach.
- Solves PF-equation w/ detailed balance

 No probability leakage
- Radiational + Collisional now on equal footings Diffusion approx. is not adequate
- 100 GeV results: Many semi-hard (20 60 GeV) qq
 daughters
- Monte-Carlo event generator version (MARTINI) in prep.

\hat{q} in MARTINI

$$E=25\,\mathrm{GeV}$$

$$E = 150 \, \text{GeV}$$

AMY Estimate:
$$\hat{q} \approx 0.3 \left(\frac{\tau}{0.2\,\text{GeV}}\right)^3 \text{GeV}^2/\text{fm}$$