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Yesterday’s talk = introduction 
Motivation = 1. LHC phenomenology requires description of hard multi parton final  
                         states in heavy ion collisions. This motivates development of MC algorithm 
                     2. exact E-p-conservation not yet implemented in previous calculations 
                         but straightforward to implement 
Here: technical discussion, focussing on the guidance which we get for an MC algorithm  
          from existing analytical calculations. 

Report on work in progress with K. Zapp and J. Stachel 



Medium-induced gluon radiation 
(expression with or without interference with vacuum term) 
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ξ0 = 0If             then projectile produced at time 
and this projectile radiates 
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ξ0 = 0
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ξ0 = −∞If              then projectile exists since tine 
and this projectile is “on-shell” 
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Consider here the simpler case  
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First order opacity for 
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Bertsch-Gunion term 
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This describes radiation in a single  scattering  event, 
which occurs                 times in a medium of length L. 
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This is straightforward to implement in parton cascade. 



Second order opacity for 
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The interference factors interpolate between totally 
coherent and totally incoherent limits 
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Where                                           is formation time before the 2nd scattering.  



Incoherent production limit 
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If the gluon is fully formed before entering the 2nd  interaction with momentum 
transfer q1, then this momentum transfer simply shifts the transverse momentum 
distribution of the gluon   

This is simply probabilistic rescattering of a fully formed gluon, 
Straightforward to implement in MC algorithm. 

Coherent production limit 
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If the gluon is not formed prior to the 2nd interaction, then both act coherently  

This extends to all orders in opacity. Analytical results provide a lot of guidance, 
e.g. 
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This defines the no-scattering probability in JEWEL. 



MC algorithm in a nutshell:  
produce gluon in inelastic process, determine position of next scattering center. If 
formation time shorter than distance, then incoherent. Else, add momentum 
transfer from next scattering center to not fully formed gluon, reevaluate the 
formation time and proceed. 



This indicates that accounting for interference in terms of formation time alone 
reproduces central features of medium-induced parton energy loss, namely at least 
sqrt-omega dependence and L2-dependence. 

But MC implementation reveals significant quantitative differences to above estimate: 
-  it’s numerical important that coherence time is not replaced 
  by average coherence time 
-  L2-dependence arises only in BDMPS limit, where hard  
  scattering tails are neglected. 

Consider back-of-the-envelope estimate for L2-dependence 

Number of coherent scatterings: ,    where 

Gluon energy distribution: 

Average energy loss 

Phase accumulated in medium: 
Characteristic  
gluon energy 
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If we implement approximations of BDMPS-ASW, 
(i.e. no energy degradation of projectile, soft momentum transfer, matrix element w/o 
microscopic E-p-conservation at each vertex) 
then MC algorithm returns BDMPS-ASW  

But we can remove these approximations and keep interference terms 
=> Some first results in talk by Korinna Zapp 



Back-up:How to implement LPM-effect in MCs? 
•  General assumption about the medium: 
   The medium gives the projectile the possibility to enter elastic or 
   inelastic interactions, given by cross sections (scattering centers 
   QT  are distributed with density n 

If tF < d (distance to next scattering center) then 
     -> gluon produced incoherently, probabilistic implementation trivial    
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•  General problem of putting LPM effect in Monte Carlos: 
   How to decide whether different scattering centers act coherently? 
   Answer: consider formation time for gluon produced in single scattering 
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If tF > d then  
     -> add qT,i of next (ith) scattering center to get   
     -> recalculate inelastic process under constraint that 
          qtot is transferred from medium (i.e. assume coherent production)  
     -> determine new formation time  
     -> check whether t’F < d , else repeat   € 
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