JEWEL

Korinna Zapp

Reminder: JEWEL

Brick Problem ir JEWEL

JEWEL – A Monte Carlo Model for Jet Quenching

Korinna Zapp

Physikalisches Institut, Universität Heidelberg

TEC-HQM Collaboration Meeting, CERN 08.07.2009

Urs Achim Wiedemann, Johanna Stachel, Gunnar Ingelman, Johan Rathsman

Outline

JEWEL

Korinna Zapp

Reminder: JEWEL

Brick Problem
EWEL

Reminder: JEWEL

Outline

JEWEL

Korinna Zapp

Reminder: JEWEL

EWEL

Reminder: JEWEL

- parton shower interleaved dynamically with elastic and inelastic scattering in a medium
- includes I PM-interference
- consistent with all known limiting cases
 - vacuum parton shower
 - elastic energy loss
 - ▶ inelastic energy loss in the absence of vacuum radiation
 - inelastic energy loss with of vacuum radiation
- minimal in the modelling
- work in progress: combination of medium induced radiation and vacuum splittings not fully tested yet (no results today)

Korinna Zapp

Reminder: IFWFI

Heart of the parton shower simulation no-splitting probability (Sudakov form factor)

$$S_{a}(Q_{i}^{2}, Q_{f}^{2}) = \exp \left[-\int_{Q_{f}^{2}}^{Q_{i}^{2}} \int_{z_{-}(Q'^{2}, E)}^{z_{+}(Q'^{2}, E)} dz \frac{\alpha_{s}}{2\pi} \sum_{b, c} \hat{P}_{a \to bc}(z) \right]$$

Hadronisation

- variant of Lund string fragmentation
- replace knowledge of colour flow by assumption of maximal colour correlation of partons close in phase space

Vacuum Baseline

JEWEL Korinna Zapp

Reminder: JEWEL

Brick Problem ir JEWEL

$$T \equiv \mathsf{max}_{\vec{n}_T} \frac{\sum_i |\vec{p}_i \cdot \vec{n}_T|}{\sum_i |\vec{p}_i|} \quad T_{\mathsf{maj}} \equiv \mathsf{max}_{\vec{n}_T \cdot \vec{n} = 0} \frac{\sum_i |\vec{p}_i \cdot \vec{n}|}{\sum_i |\vec{p}_i|} \quad T_{\mathsf{min}} \equiv \frac{\sum_i |\vec{p}_{ix}|}{\sum_i |\vec{p}_i|}$$

not very sensitive to hadronisation

A. Heister et al. [ALEPH Coll.] Eur. Phys. J. C 35 (2004) 457

scattering cross section:

$$\sigma_{\mathsf{elas}}^{\mathsf{l}} = \int\limits_{0}^{|t_{\mathsf{max}}|} \mathsf{d}|t| \, \frac{\pi \, \alpha_{\mathsf{s}}^2 (|t| + \mu_{\mathsf{D}}^2)}{s^2} \, C_R \, \frac{s^2 + u^2}{(|t| + \mu_{\mathsf{D}}^2)^2}$$

or

$$\sigma_{\mathsf{elas}}^{\mathsf{II}} = \int\limits_{\mu_{\mathsf{D}}^2}^{\mathsf{I-max}} \mathsf{d}|t| \, \frac{\pi \, \alpha_{\mathsf{s}}^2(|t|)}{\mathsf{s}^2} \, C_R \, \frac{\mathsf{s}^2 + u^2}{|t|^2}$$

- ▶ no-scattering probability: $\exp(-n\sigma_{\text{elas}}\tau)$
- possibility to let the recoil scatter (not explored here)
- medium: collection of scattering centres (here: constant temperature, ideal quark-gluon gas EOS)

Korinna Zapp

Reminder: JEWEL

Brick Problem

mean collisional energy loss without Q^2 -evolution

 reproduces analytical calculations (with their dependence on regularisation schemes)

Radiative Energy Loss Baseline

JEWEL

Korinna Zapp

Reminder: JEWEL

Brick Problem in EWEL

was covered by Urs Wiedemann this morning. . .

Underlying Assumption

- assume that elastic scattering does not affect Q²-evolution (no significant transverse phase space opened)

Spatio-temporal structure of shower

▶ lifetime of parton in shower (estimate from uncertainty principle):

$$\tau = \frac{E}{Q_{\rm f}^2} - \frac{E}{Q_{\rm i}^2}$$

To compare with: simple model for induced radiation

ightharpoonup increase probability for perturbative splitting by factor $1+f_{
m med}$ inside the medium

100 GeV quark jet, only hadrons with $E_h > 2$ GeV included

$$T = 500 \,\mathrm{MeV},\ L = 5 \,\mathrm{fm}$$

 might allow to distinguish between elastic and radiative energy loss Summary

JEWEL

Korinna Zapp

Reminder: JEWEL

Brick Problem i IFWFI

Outline

JEWEL

Korinna Zapp

Reminder: JEWEL

Brick Problem in JEWEL

Reminder: JEWEL

- brick problem considers only elastic and inelastic energy loss, but no vacuum radiation
- naturally included in JEWEL, but uses/tests only part of JEWEL functionality
- qualitative differences between medium induced radiation in the presence/absence of vacuum radiation
- interesting variation of brick problem: determine energy loss based on leading parton instead of outgoing projectile
- ► remark: our BDMPS-ASW reference is a Monte Carlo reproduction of the analytical calculation

Reminder: IFWFI

 naturally included in JEWEL, but uses/tests only part of JEWEL functionality

- qualitative differences between medium induced radiation in the presence/absence of vacuum radiation
- interesting variation of brick problem: determine energy loss based on leading parton instead of outgoing projectile
- ▶ remark: our BDMPS-ASW reference is a Monte Carlo reproduction of the analytical calculation

- brick problem considers only elastic and inelastic energy loss, but no vacuum radiation
- naturally included in JEWEL, but uses/tests only part of JEWEL functionality
- qualitative differences between medium induced radiation in the presence/absence of vacuum radiation
- interesting variation of brick problem: determine energy loss based on leading parton instead of outgoing projectile
- remark: our BDMPS-ASW reference is a Monte Carlo reproduction of the analytical calculation

JEWEL radiative: energy carried by radiated gluons

JEWEL recoil: energy carried away by recoil in elastic or

inelastic scattering

⇒ distinct differences between BDMPS ASW and JEWEL scenario **JEWEL**

Korinna Zapp

Reminder: JEWEL

JEWEL radiative: energy carried by radiated gluons

JEWEL recoil: energy carried away by recoil in elastic or
inelastic scattering

⇒ distinct differences between BDMPS ASW and JEWEL scenario **JEWEL**

Korinna Zapp

Reminder: JEWEL

JEWEL

Korinna Zapp

Reminder: JEWEL

Brick Problem in JEWEL

JEWEL radiative: energy carried by radiated gluons

JEWEL recoil: energy carried away by recoil in elastic or inelastic scattering

⇒ distinct differences between BDMPS ASW and JEWEL scenario

 $E_{\rm a}=10\,{\rm GeV}$

JEWEL radiative: energy carried by radiated gluons JEWEL recoil: energy carried away by recoil in elastic or inelastic scattering

JEWEL

Korinna Zapp

Reminder: JEWEL

JEWEL radiative: energy carried by radiated gluons

JEWEL recoil: energy carried away by recoil in elastic or
inelastic scattering

→ distinct differences between BDMPS ASW and JEWEL scenario **JEWEL**

Korinna Zapp

Reminder: JEWEL

 $L=2\,\mathrm{fm}$ $E_{\mathrm{q}}=100\,\mathrm{GeV}$ $\langle rac{\Delta E}{E_{\mathrm{q}}}
angle =0.1$

JEWEL radiative: energy carried by radiated gluons

JEWEL recoil: energy carried away by recoil in elastic or
inelastic scattering

⇒ distinct differences between BDMPS ASW and JEWEL scenario JEWEL

Korinna Zapp

Reminder: JEWEL

▶ no rescattering of formed gluons and scattering centres

JEWEL

Korinna Zapp

Reminder: JEWEL

▶ no rescattering of formed gluons and scattering centres

JEWEL

Korinna Zapp

Reminder: JEWEL

▶ no rescattering of formed gluons and scattering centres

JEWEL

Korinna Zapp

Reminder: JEWEL

▶ no rescattering of formed gluons and scattering centres

JEWEL

Korinna Zapp

Reminder: JEWEL

Conclusions

JEWEL

Korinna Zapp

Reminder: JEWEL

- ▶ these are exploratory studies
- \Rightarrow there is more to follow, so stay tuned

JEWEL

Korinna Zapp

Reminder: JEWEL

Brick Problem in JEWEL

Backup Slides

BDMPS ASW opacity expansion:

$$\omega rac{\mathrm{d} I(N=1)}{\mathrm{d} \omega \, \mathrm{d} \mathbf{k}_{\perp} \, \mathrm{d} \mathbf{q}_{\perp}} =$$

$$\frac{\alpha_{\mathcal{L}}}{\pi^2} \frac{\alpha_{\mathbf{k}_{\perp}}}{2\omega^2} \frac{\mathbf{q}_{\perp}}{(2\pi)^2} |A(\mathbf{q}_{\perp})|^2 (\mathbf{k}_{\perp} \cdot \mathbf{q}_{\perp}) n_0 \tau \tau_1^2 \left[\frac{L}{\tau_1} - \sin\left(\frac{L}{\tau_1}\right) \right]$$

explicit field theoretic manifestation of the formation time

$$\tau_1 = \frac{2\omega}{(\mathbf{k}_{\perp} - \mathbf{q}_{\perp})^2}$$

interpolates between limiting cases

 $\tau_1 \gg L$: totally coherent

 $au_1 \ll extcolor{L}$: totally incoherent

MC procedure:

- 1. create gluon in inelastic process
- 2. check if scattering during t_f
- no: gluon is formed, back to 1
- yes: scattering after time $\Delta t < t_{\rm f}$, re-evaluate formation time, back to 2

$$\frac{\mathsf{d}\sigma}{\mathsf{d}q_\perp^2} \propto \frac{1}{(q_\perp^2 + \mu^2)^2} \, \theta\!\!\left(q_\perp^2 - 4\mu^2\right) \to \frac{1}{(q_\perp^2 + \mu^2)^2}$$

2. going beyond BDMPS soft gluon approximation

3. exploring realistic kinematics of inelastic process

here: extreme limit
$$\frac{\mathrm{d}^2\sigma^{\mathrm{qQ}\to\mathrm{qQg}}}{\mathrm{d}\omega\,\mathrm{d}k_\perp^2} = \sigma^{\mathrm{qQ}\to\mathrm{qQ}}\frac{C_\mathrm{F}4\alpha_\mathrm{s}}{\pi}\frac{1}{\omega}\frac{1}{k_\perp^2}$$

4. this includes recoil effects in elastic and inelastic processes

JEWEL

Korinna Zapp

Reminder: JEWEL

Korinna Zapp

Reminder: JEWEL

Brick Problem in JEWEL

BDMPS ASW results:

$$rac{\mathrm{d}I}{\mathrm{d}\omega} \propto \omega^{-3/2} \quad \mathrm{for} \quad \omega < \omega_{\mathrm{c}}$$
 $rac{\mathrm{d}I}{\mathrm{d}\omega} \propto \omega^{-3} \quad \mathrm{for} \quad \omega > \omega_{\mathrm{c}}$ $\Delta E \propto L^2 \quad \mathrm{for} \quad L < L_{\mathrm{c}}$ $\Delta E \propto L \quad \mathrm{for} \quad L > L_{\mathrm{c}}$

Improving Radiative Energy Loss

going beyond BDMPS ASW:

all improvements lead to

- loss of coherence
- enhanced energy loss

JEWEL

Korinna Zapp

Reminder: JEWEL