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What did we learn from the
“QGP Brick” Problem ?

* The community can collaborate

* More popular than anticipated

* Specifying a problem completely is not easy
* The “QGP Brick” challenge was useful

e The “QGP Brick’” will remain a benchmark
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The Entrants - 1

Inelastic WHDG Single Inclusive dN,,/dx

O=up.E=106GeV.L =21, T =300 MeV, o = 0.3 (X = 1, pz == 0.5)

ASW

quark, E = 10 GeV, L =2 fm
I

— <AE>/E = 5%, ghat = 0.5 GeV’/fm

— <AE>/E = 10%, ghat = 1.5 GeV'/fm

<AE>/E = 20%, ghat = 3 GeV'/fm
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The Entrants - 2

= 2.0 GeV /fm ~ T=400MeV
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Making comparisons across the
Jet Quenching Landscape

HT AMY

e ¢

WHDG Opacity PQ CD Multiple Soft

Expansion Scattering

\ }

ASW-OF  <--ssnnsmsessanness > BDMPS-Z
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WHDG < ASW-LOE
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It all depends on what the meaning of “x” is....
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Identical in the k, /W limit, but ...




.. but not when you consider the kinematic limit of k. for given w.

WHDG ASW

T o O SR8 O - kp<xgE

® Koo =2%(1-x) E ¢ Koo =xX.E
E = 18 GoV

Lesson:

Kinematic assumptions
beyond the strict validity
of the eikonal/collinear
approximation can have
drastic consequences
even at high energies,
because radiation always
tries to exhaust the
available phase space.
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Vac-med interference vs. LPM
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Summary of insights: WHDG < ASW-LOE

e Different definitions of the variables x+ and Xxg;

* |mportance of the kinematical region k, ~ W, which violates
the assumption of collinearity of the radiation process,

e Absence of exact energy and momentum conservation, both
in the elementary process and in the convolution of successive
radiation events (radiative cascade);

* |nfluence of different choices for the distribution of
scattering centers (step function vs. exponential).

* Need for a consistent definition of g” for quantitative

comparison with other models. .
q= p/d%u ai

d? ql
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Summary of insights: WHDG < HI-LO

e HT implements energy-momentum conservation in the
elementary process;

e HT assumes k;, >> q, i.e. virtuality is dominated by primary
hard scattering;

* HT encodes the running of &s(Q?). For a first quantitative
comparison with WHDG one should set &s constant, and then
explore the quantitative importance of the running of Xs;

* HT does not assume a specific model of the medium, but
parametrizes the medium through a transport coefficient g*
(and é for elastic energy loss);

* HT exhibits sizable flavor change of leading parton.
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Summary of insights: BDMPS-Z < AMY

e AMY does not contain interference between vacuum and
medium induced radiation;

e AMY implements exact energy and momentum conservation,
both in the elementary process and in the radiative cascade;

e AMY treats the medium dynamically, not as collection of static
scattering centers;

* Average energy loss is a bad approximation for true collisional
energy loss;

e AMY and BDMPS both assume collinearity of the radiation;
importance of large angle radiation needs to be studied;

e AMY exhibits sizable flavor change of leading parton.

Thursday, July 9, 2009



Summary of insights: BDMPS-Z < WHDG

* Assignment of g = pJ2/A in WHDG seems to underestimate
the true value of g” by a factor 2-3;

e Correct definition: q* = <kL2) /A= P .
e Results for WHDG and BDMPS-Z can be mapped into each
other by a rescaling of T or L of the medium by factor ~2;

e Results of g” fit for a dynamical medium differ by factor ~2.
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Outlook (1)

* Origin of differences between 15 generation jet quenching
formalisms is now well understood; they lie mostly outside the
range of strict validity of the eikonal-collinear approximation.

e pQCD approach to jet quenching is alive and well.

* Reduction of uncertainty in g* from Raa to < factor 2
seems possible with some effort.
* Most severe deficiencies are:

* Energy-momentum conservation;

e Vacuum radiation interference;

* Consistent treatment of elastic & inelastic processes;

* Ad hoc vacuum hadronization (?)
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Outlook (2)

e A timely and comprehensive “TEC-HQM report” on the
insights gained from the QGP Brick challenge would be a
document of great value and with lasting impact.

* “Timely” = 3 months (?)

e “Comprehensive” < circulated outline sketch (?)

* “Ist generation” jet quenching formalisms will remain the
basis for MC schemes and detailed modeling of jet evolution.

* 15t generation jet quenching codes will also provide test
cases for more sophsticated schemes.
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Outlook (3)

* Some other questions:

* Can laa vs. Raa be used to check consistency of g*
determination!?

e Can selection of jet virtuality (“jet mass”) be used to
discriminate between VMI and LPM ?

* Can we probe the validity of vacuum hadronization
assumption ! It must fail somewhere! (recombination?
heavy quark hadrons?)

* Can we rule out that QCD jets become nonperturbative
once they “see” the QGP? Can we rule out that pQCD
does not apply to jets in a QCD medium? What kind of
fragmentation pattern would a thin [i.e. L << E/(dE/dx)]
“AdS/CFT Brick” produce?
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