

PARAMETRIC ANALYSIS OF FORCES AND STRESS IN SUPERCONDUCTING MAGNETS

P. Fessia, <u>F. Regis</u>, E. Todesco Magnets, Superconductors, and Cryostats (MSC) Technology Department (TE)

- Aim of the work
- Forces and Stress in Quadrupoles
 - □ Analytical formulae for e.m. forces and comparison with FEM models
 - Analytical formulae for mechanical stress and comparison with FEM models
 - **□** E.m. forces and mechanical stress at short sample
 - □ Iron effect
 - Comparison with real cross sections
 - □ Conclusions
- Forces and Stress in Dipoles

• ...

- Aim of the work
- Forces and Stress in Quadrupoles
 - □ Analytical formulae for e.m. forces and comparison with FEM models
 - Analytical formulae for mechanical stress and comparison with FEM models
 - □ E.m. forces and mechanical stress at short sample
 - □ Iron effect
 - Comparison with real cross sections
 - Conclusions
- Forces and Stress in Dipoles

• ...

AIM OF THE WORK

- In superconducting magnets, large electro-magnetic (e.m.) forces and related stress are generated by the interaction of the transport current with the magnetic field.
- Mechanical stress shall be limited to avoid superconductor degradation phenomena and insulation creep.
- The Nb₃Sn is considered the most suitable superconductor for new generation superconducting accelerator magnets (peak fields > 10 T). The s.c. properties of Nb₃Sn are strongly dependent on the mechanical stress applied.
- We aim at provide simple analytical tools to estimate the e.m. forces and mechanical stress in a superconducting coil as a function of the aperture radius r_i, coil equivalent width w, and superconductor type (Nb-Ti, Nb₃Sn).

- Aim of the work
- Forces and Stress in Quadrupoles
 - □ Analytical formulae for e.m. forces and comparison with FEM models
 - Analytical formulae for mechanical stress and comparison with FEM models
 - □ E.m. forces and mechanical stress at short sample
 - □ Iron effect
 - Comparison with real cross sections
 - Conclusions
- Forces and Stress in Dipoles

• ...

QUADRUPOLES – COIL MODELS

Analytical coil model

- Sector coil layout at 30 (cancel the sixth order field harmonic)
- Constant current density *j(r)=j*
- Aperture radius r_i
- Coil equivalent width *w*

y

FEM coil model

- 2D FEM model ANSYS™
- Coupled analysis: magnetic-mechanical
- Magnetic analysis solves for the Magnetic Vector Potential (*A_z* component)
- Mechanical symmetry constraints on coil midplain
- Infinitely rigid collar (radial mech. constraints)

QUADRUPOLES – ANALYTICAL MODEL VALIDATION

- Parametric analysis carried out on:
 - 1. r_i : [14,28,56,84,112,140,168,196] mm
 - 2. w: **[5,10,15, 20,25, 30,35,40]** mm
- $j=1000 \text{ A/mm}^2$ regardless of the layout
 - Good agreement for the field in the aperture (*G*), worst inside the coil
 - On the other hand the magnetic energy and the magnetic forces are in good agreement with numerical results
- \underline{F}_{mag} follow a linear trend with: r_i and w^2
- F_x underestimates the numerical value of about 4%
- F_y overestimates the numerical value of <3%

QUADRUPOLES – ANALYTICAL MODEL VALIDATION

QUADRUPOLES – ANISOTROPY ANALYSIS

- The shear effect is not taken into account \rightarrow no quantification of the material effect (Young's modulus *E*)
- Superconductor cables are anisotropic
- Effect of anisotropy ratio E_{ϕ}/E_{ϕ} has been numerically evaluated

 $E_{\varphi} = [0.5, 1, 2, 4, 6, 8]$ with $E_{\varphi, ref} = 13$ GPa (LHC-MB outer layer)

- $|\sigma_{\varphi,\max}|$ agreement <2.5%
- > $r(\sigma_{\varphi,max})$ agreement <10%
- Larger errors at the inner radius, where the impact on superconductor performance is second order

No considerable difference in peak stress due to anisotropic coil, compared to the isotropic case

• Aim of the work

• Forces and Stress in Quadrupoles

- □ Analytical formulae for e.m. forces and comparison with FEM models
- Analytical formulae for mechanical stress and comparison with FEM models
- **□** E.m. forces and mechanical stress at short sample
- □ Iron effect
- Comparison with real cross sections
- Conclusions
- Forces and Stress in Dipoles

• ...

Nb-Ti $j_{c,Nb-Ti} = \frac{\kappa c B_{c2}^{*}}{1 + \kappa c r_{i} \lambda \langle \!\!\! \langle \!\!\! i, w \rangle \!\!\!\! \rangle_{0} \ln \left(1 + \frac{w}{r_{i}}\right)}$

Nb₃Sn

$$j_{c,Nb_3Sn} = \frac{\kappa c}{2} \left(\sqrt{\frac{4B_{c2}^*}{\kappa c \lambda \gamma} + 1} - 1 \right)$$

- *κ*: cable dilution factor, ranging in [0.23-0.35] (LHC-MQ: *κ* =0.25)
- *B*_{*c*2}: critical field (T)
- *c*: critical surface slope (A/Tm²)
- $\lambda = B_p / (G_c r_i)$ (adim)
- $\gamma = \ln(1 + w/r_i)\gamma_0 = \ln(1 + w/r_i) 0.693e-6$ (30 layout) (Tm²/A)

Peak field

$$B_p = j\lambda \langle i, w \rangle$$

	Nb	-Ti	Nb ₃ Sn		
Т (К)	1.9	4.2	1.9	4.2	
c (A/Tm ²)	6e8	6e8	4e9	3.9e9	
$B_{c2}(T)$	13	10	23.1	21	

L. Rossi, E. Todesco, "Electromagnetic design of superconducting quadrupoles", Phys. Rev. 9, 102401 (2006)

QUADRUPOLES – FORCES AT SHORT SAMPLE

Model input

- κ set to 0.3 in order to have comparable results
- *r_i* ranges in [14-84] mm
- w ranges in $[5-w(G_{sat})]$ mm

- F_{mag} proportional to j^2
- F_{mag} almost linear with the increased width
- Increase in net force *F_{mag}* is proportional to the ratio of critical current between two superconductors:

$$F_{Nb_3Sn} = \left(\frac{j_{Nb_3Sn}}{j_{Nb-Ti}}\right)^2 F_{Nb-Ti}$$

QUADRUPOLES – $\sigma_{\phi,max}$ AT SHORT SAMPLE

□ $r(\sigma_{\phi,max})$ obtained from the solution of an implicit equation

□ The $\sigma_{\varphi,max}$ - G_c curve shows a local maximum, depending on the aperture r_i , coil width w and dilution factor κ .

QUADRUPOLES – $\sigma_{\phi,max}$ AT SHORT SAMPLE

For aperture radii >60mm, the peak stress is close to the mechanical limit before superconductor degradation. This value is assumed to be about 150-200 MPa.

QUADRUPOLES – $\sigma_{\phi,max}$ AT SHORT SAMPLE

□ T=1.9 K, $j_{c,Nb3Sn}/j_{c,Nb-Ti}$ =1.4 → $\sigma_{\varphi,max}$ doubles □ G_c =280 T/m (r_i =30 mm): w_{Nb-Ti} = 40 mm (1.9K), w_{Nb3Sn} =14 mm (4.2K)

• Aim of the work

• Forces and Stress in Quadrupoles

- □ Analytical formulae for e.m. forces and comparison with FEM models
- Analytical formulae for mechanical stress and comparison with FEM models
- E.m. forces and mechanical stress at short sample

□ Iron effect

- Comparison with real cross sections
- Conclusions
- Forces and Stress in Dipoles

• ...

QUADRUPOLES – IRON EFFECT

- Using an iron yoke we increase the field gradient ΔG and the peak field ΔB_p for a given *j*.
- The expression of *j* has to be revised
- No iron saturation $(\mu_r \rightarrow \infty)$
- *G_c* and *B_p* considered as linear functions of *j*

- The iron effect has been analytically accounted for using the *Image Current* approach
- Collar width: $w_{coll} = R_{yoke} r_o$
- w_{coll} ranges in [10-50] mm
- G_c analytically derived
- B_p numerically evaluated

QUADRUPOLES - IRON EFFECT

□ $\sigma_{\varphi,max}$ for iron (w_{coll} =20 mm) and ironless case are compared

QUADRUPOLES – IRON EFFECT

□ The iron acts as a larger coil width, but the stress-gradient relation remains essentially the same.

• Aim of the work

• Forces and Stress in Quadrupoles

- □ Analytical formulae for e.m. forces and comparison with FEM models
- Analytical formulae for mechanical stress and comparison with FEM models
- E.m. forces and mechanical stress at short sample
- □ Iron effect
- Comparison with real cross sections
- Conclusions
- Forces and Stress in Dipoles

•

QUADRUPOLES COMPARISON WITH REAL X-SECTIONS

- Different state of the art Nb-Ti quadrupoles have been considered as a bench test for the analytical approximation.
- Both cases of coil in air and iron screened were studied at short sample.
- Reference F_{mag} computed in Roxie

• Comparison based on the equivalent coil width, leading to the same coil surface A:

$$w_{eq} = \left(\sqrt{1 + \frac{3A}{2\pi r_i^2}} - 1\right) r_i$$

	r_i (mm)	w _{eq} (mm)	k	Т (К)	R _s (mm)	w _{coll} (mm)
LHC-MQ	28	28.4	0.254	1.9	90	31
LHC-MQM	28	17	0.263	1.9	102	27
RHIC MQ-ARC	40	9.1	0.228	4.6	55	5
HERA MQ	37.4	18.2	0.273	4.4	80	24
ISR MQ	116	32.1	0.346	4.4	176	22
Tevatron MQ	44.59	15.4	0.243	4.0	101	41
LHC-MQXA	34.94	37.4	0.352	1.9	92	12
LHC-MQXB	35	26.7	0.338	1.9	92	26

QUADRUPOLES COMPARISON WITH REAL X-SECTIONS

ΛΙΡ	Fx	Fy	Fx,an	Fy,an	% Diff Ev	% Diff En
AIN	(MN/m)	(MN/m)	(MN/m)	(MN/m)	/оDШ,ГХ	<i>ю</i> Dш,гу
LHC-MQ	0.69	-1.22	0.63	-1.17	-8.9	-4.1
LHC-MQM	0.38	-0.73	0.34	-0.70	-10.2	-4.4
RHIC MQ-ARC	0.09	-0.21	0.08	-0.20	-8.5	-5.9
HERA MQ	0.30	-0.61	0.27	-0.58	-9.7	-4.6
ISR MQ	1.22	-2.53	0.93	-2.17	-23.4	-14.1
Tevatron MQ	0.17	-0.35	0.15	-0.33	-9.7	-5.4
LHC-MQXA	1.10	-2.04	1.04	-1.93	-5.1	-5.2
LHC-MQXB	0.76	-1.49	0.72	-1.41	-5.4	-5.4
	Fx	Fy	Fx,an	Fy,an		0/ D:((F
IRON	Fx (MN/m)	Fy (MN/m)	Fx,an (MN/m)	Fy,an (MN/m)	%Diff,Fx	%Diff,Fy
IRON LHC-MQ	Fx (MN/m) 0.537	Fy (MN/m) -0.732	Fx,an (MN/m) 0.515	Fy,an (MN/m) -0.731	%Diff,Fx -4.2	%Diff,Fy -0.1
IRON LHC-MQ LHC-MQM	Fx (MN/m) 0.537 0.309	Fy (MN/m) -0.732 -0.446	Fx,an (MN/m) 0.515 0.300	Fy,an (MN/m) -0.731 -0.436	%Diff,Fx -4.2 -2.9	%Diff,Fy -0.1 -2.3
IRON LHC-MQ LHC-MQM RHIC MQ_ARC	Fx (MN/m) 0.537 0.309 0.099	Fy (MN/m) -0.732 -0.446 -0.0842	Fx,an (MN/m) 0.515 0.300 0.092	Fy,an (MN/m) -0.731 -0.436 -0.077	%Diff,Fx -4.2 -2.9 -6.7	%Diff,Fy -0.1 -2.3 -8.3
IRON LHC-MQ LHC-MQM RHIC MQ_ARC HERA MQ	Fx (MN/m) 0.537 0.309 0.099 0.148	Fy (MN/m) -0.732 -0.446 -0.0842 -0.187	Fx,an (MN/m) 0.515 0.300 0.092 0.134	Fy,an (MN/m) -0.731 -0.436 -0.077 -0.180	%Diff,Fx -4.2 -2.9 -6.7 -9.5	%Diff,Fy -0.1 -2.3 -8.3 -3.8
IRON LHC-MQ LHC-MQM RHIC MQ_ARC HERA MQ ISR MQ	Fx (MN/m) 0.537 0.309 0.099 0.148 0.911	Fy (MN/m) -0.732 -0.446 -0.0842 -0.187 -0.838	Fx,an (MN/m) 0.515 0.300 0.092 0.134 0.754	Fy,an (MN/m) -0.731 -0.436 -0.077 -0.180 -0.685	%Diff,Fx -4.2 -2.9 -6.7 -9.5 -17.2	%Diff,Fy -0.1 -2.3 -8.3 -3.8 -18.2
IRON LHC-MQ LHC-MQM RHIC MQ_ARC HERA MQ ISR MQ Tevatron MQ	Fx (MN/m) 0.537 0.309 0.099 0.148 0.911 0.137	Fy (MN/m) -0.732 -0.446 -0.0842 -0.187 -0.838 -0.209	Fx,an (MN/m) 0.515 0.300 0.092 0.134 0.754 0.121	Fy,an (MN/m) -0.731 -0.436 -0.077 -0.180 -0.685 -0.201	%Diff,Fx -4.2 -2.9 -6.7 -9.5 -17.2 -11.4	%Diff,Fy -0.1 -2.3 -8.3 -3.8 -18.2 -4.0
IRON LHC-MQ LHC-MQM RHIC MQ_ARC HERA MQ ISR MQ Tevatron MQ LHC-MQXA	Fx (MN/m) 0.537 0.309 0.099 0.148 0.911 0.137 1.635	Fy (MN/m) -0.732 -0.446 -0.0842 -0.187 -0.838 -0.209 -1.573	Fx,an (MN/m) 0.515 0.300 0.092 0.134 0.754 0.121 1.356	Fy,an (MN/m) -0.731 -0.436 -0.077 -0.180 -0.685 -0.201 -1.343	%Diff,Fx -4.2 -2.9 -6.7 -9.5 -17.2 -11.4 -17.1	%Diff,Fy -0.1 -2.3 -8.3 -3.8 -18.2 -4.0 -14.6

• Aim of the work

• Forces and Stress in Quadrupoles

- □ Analytical formulae for e.m. forces and comparison with FEM models
- Analytical formulae for mechanical stress and comparison with FEM models
- E.m. forces and mechanical stress at short sample
- □ Iron effect
- Comparison with real cross sections

Conclusions

• Forces and Stress in Dipoles

•

QUADRUPOLES - CONCLUSIONS

- A simple analytical approach is presented, based on a 30° sector coil to estimate the peak azimuthal stress on coil.
- The azimuthal peak stress at short sample shows a localized maximum; it appears that for larger coil widths the increased gradient copes with a reduced peak stress.
- In Nb-Ti coils, the peak stress is always below 100 MPa (possible insulation creep).
- In Nb₃Sn coils, the peak stress can be below the assumed limit of 150 MPa for aperture radii up to 60 mm.
- A correction of the critical current density is proposed, based on a semianalytical approach.
- With an iron screen, both *G_c* and the peak stress increase to the same level as it would be for an ironless coil, producing the same gradient.
- All the computations have been performed at short sample. A safety operating margin of 20% would lead to a the peak stress reduction of ~40%.

- Aim of the work
- Forces and Stress in Quadrupoles

• …

- Forces and Stress in Dipoles
 - □ Analytical formulae for e.m. forces and comparison with FEM models
 - Analytical formulae for mechanical stress and comparison with FEM models
 - □ E.m. forces and mechanical stress at short sample
 - □ Iron effect
 - Comparison with real cross sections
 - Conclusions

DIPOLES - COIL MODELS

Analytical coil model

- Sector coil layout at 60 (cancel the sextupole coefficient in the field series expansion)
- Constant current density *j(r)=j*
- Aperture radius r_i
- Coil equivalent width *w*

FEM coil model

- 2D FEM model ANSYS[™]
- Coupled analysis: magnetic-mechanical
- Magnetic analysis solves for the Magnetic Vector Potential (*A_z* component)
- Mechanical symmetry constraints on coil midplain
- Infinitely rigid collar (radial mech. constraints)

DIPOLES – ANALYTICAL MODEL VALIDATION E.M. FORCES

- Parametric analysis carried out on:
 - 1. *r_i* : [20, 30, 40, 50] mm
 - 2. w: [15, 20, 30, 40, 50] mm
- *j*=1000 A/mm² regardless of the layout
- The analytical approach does not well describe the magnetic field inside the coil
- On the other hand the magnetic energy and the magnetic forces are in good agreement with numerical results
- \underline{F}_{mag} follow a linear trend with: r_i and w^2
- F_x underestimates the numerical value of about 3%
- F_y overestimates the numerical value of about 6%

DIPOLES – ANALYTICAL MODEL VALIDATION MECHANICAL STRESS

Azimuthal stress

$$\sigma_{\varphi}(r) = \frac{j^2 \mu_0 \sqrt{3}}{6\pi r} \left[r^3 + r_i^3 - 3r^2 \zeta_i + w \right]$$

- Analytical approach: $\sigma_{q,max}$ position is ~2/3 of coil width w
- Large aspect ratio *w*/*r_i*: σ_{φ,max} position at the outer radius (numerical evidence)
- σ_{φ,max} usually differs of 3% with the numerical value

Radial stress

$$\sigma_{r}(\varphi) = \frac{j^{2} \mu_{0} \sqrt{3}}{18\pi (i + w)} f_{pr} (3, w^{3}, \varphi)$$

- > $\sigma_{r,max}$ along the mid-plane (ϕ =0)
- The peak radial stress differs of ~1% with the numerical value

- Aim of the work
- Forces and Stress in Quadrupoles

• …

• Forces and Stress in Dipoles

- □ Analytical formulae for e.m. forces and comparison with FEM models
- Analytical formulae for mechanical stress and comparison with FEM models
- **□** E.m. forces and mechanical stress at short sample
- □ Iron effect
- Comparison with state of the art cross sections
- Conclusions

CRITICAL SURFACE PARAMETERIZATION

Nb-Ti

$$j_{c,Nb-Ti} = \frac{\kappa c B_{c2}^*}{1 + \kappa c \lambda \langle i, w \rangle_0 w}$$

$$j_{c,Nb_3Sn} = \frac{\kappa c}{2} \left(\sqrt{\frac{4B_{c2}^*}{\kappa c \lambda \gamma} + 1} - 1 \right)$$

- *κ*: cable dilution factor
 - $\kappa_{\text{Nb-Ti}}$ ranges in [0.23-0.3]
 - $\kappa_{\text{Nb}_3\text{Sn}}$ ranges in [0.26-0.48]
- *B*_{c2}: critical field (T)
- *c*: critical surface slope (A/Tm²)
- $\lambda = B_p / B_0$ (adim)
- $\gamma = w \gamma_0 = w 6.93 \text{e-}7 (60 \text{ layout}) (\text{Tm}^2/\text{A})$

Central field $B_0 = j\gamma_0 w$

Peak field $B_p = j\lambda \langle i, w \rangle_0 w$

	Nb	-Ti	Nb ₃ Sn		
Т (К)	1.9	4.2	1.9	4.2	
c (A/Tm ²)	6e8	6e8	4e9	3.9e9	
$B_{c2}(T)$	13	10	23.1	21	

L. Rossi, E. Todesco, "Electromagnetic design of superconducting dipoles based on sector coils", Phys. Rev. 10, 112401 (2007)

DIPOLES – FORCES AT SHORT SAMPLE

j increases of about 30-40% using Nb₃Sn instead of Nb-Ti, depending on the geometrical layout

- F_{mag} proportional to j^2
- Small w: higher central field matches higher forces for a cable add-on
- *Large w*: force trend tends to saturate together with *B*⁰ for a cable add-on

Model input

- κ set to 0.35 in order to have comparable results
- *r_i* ranges in [20-60] mm
- *w* ranges in [5-80] mm

DIPOLES – $\sigma_{\phi,max}$ AT SHORT SAMPLE

□ Decrease in *j*² rules over the increase of the geometrical factor

- For larger coil width, higher field are achieved reducing at the same time the peak azimuthal stress.
- □ This effect increases for larger apertures

DIPOLES – $\sigma_{\phi,max}$ AT SHORT SAMPLE

For r_i<20 mm, the assumed limit of 150 MPa is not constraining the coil size.
Less efficient but larger coil could bring the peak stress down (cost issue)
r_i=30 mm, and B₀=15 T: κ=0.25 leads to σ_{φ,max}=130 MPa, but w=60 mm is required

DIPOLES – $\sigma_{\phi,max}$ AT SHORT SAMPLE

□ T=1.9 K, $j_{c,Nb3Sn}/j_{c,Nb-Ti}$ =1.5 → $\sigma_{\varphi,max(Nb3Sn)}$ =2.2 $\sigma_{\varphi,max(Nb-Ti)}$ □ B_0 =12 T (r_i =30 mm): w_{Nb-Ti} = 80 mm (1.9K), w_{Nb3Sn} =20 mm (4.2K) → σ limited

- Aim of the work
- Forces and Stress in Quadrupoles

• …

• Forces and Stress in Dipoles

- □ Analytical formulae for e.m. forces and comparison with FEM models
- Analytical formulae for mechanical stress and comparison with FEM models
- □ E.m. forces and mechanical stress at short sample

□ Iron effect

- Comparison with real cross sections
- Conclusions

DIPOLES - IRON EFFECT

- Using an iron yoke we increase the bore field ΔB_0 and the peak field ΔB_p for a given *j*
- The expression of *j* has to be revised
- We do not account for field saturation
- *B*₀ and *B*_{*p*} are then considered as linear function of *j*
- The iron effect has been analytically accounted for using the *Image Current* approach
- Collar width: $w_{coll} = R_{yoke} r_o$
- w_{coll} ranges in [10-60] mm, steps of 10 mm
- \square *B*⁰ analytically derived
- \square *B_p* numerically evaluated

DIPOLES - IRON EFFECT

DIPOLES - IRON EFFECT

The use of the iron yoke allows to: increase the bore field, reduce the current density *j*_{iron} as well as the peak stress on coil for a given layout (*κ* dependent).
For a given *B*, a smaller width can be used, facing a slightly higher peak stress

□ For a given *B*₀, a smaller width can be used, facing a slightly higher peak stress (few percent).

- Aim of the work
- Forces and Stress in Quadrupoles

• …

• Forces and Stress in Dipoles

- □ Analytical formulae for e.m. forces and comparison with FEM models
- Analytical formulae for mechanical stress and comparison with FEM models
- □ E.m. forces and mechanical stress at short sample
- □ Iron effect
- Comparison with real cross sections
- Conclusions

- Different state of the art Nb-Ti dipoles have been considered as a bench test for the analytical approximation.
- Both cases of coil in air and iron screened were studied at short sample.
- Comparison based on the equivalent coil width, leading to the same coil surface A:

$$w_{eq} = \left(\sqrt{1 + \frac{3A}{2\pi r_i^2}} - 1\right)r_i$$

	r _i (mm)	w _{eq} (mm)	w _{coll} (mm)	σ _φ ,FE (MPa)	σ _φ ,An (MPa)	%Diff.
RHIC MB	40.00	9.22	9.6	62.6	68.8	10
LHC MB	28.00	26.84	39.2	87.5	85.3	-3
SSC MB	25.00	21.52	19.4	53.3	49.8	-7
Tevatron MB	38.05	14.30	36.1	87.6	64.2	-27
HERA MB	37.50	18.74	28.2	87.0	62.1	-29

DIPOLES – COMPARISON WITH REAL X-SECTIONS

- □ The difference in forces is <10% along the X-Y Cartesian directions.
- □ Difference in peak stress is <10%, except for Tevatron MB and HERA MB where $\sigma_{\varphi,max}$ is <30% underestimated by the analytical approach.
- □ This effects depends on the augmented $\Delta \alpha$ angle between inner and outer layers: the higher $\Delta \alpha$, the higher the peak stress, up to ~40% (test at 1000 A/mm²).

- Aim of the work
- Forces and Stress in Quadrupoles

• …

• Forces and Stress in Dipoles

- □ Analytical formulae for e.m. forces and comparison with FEM models
- Analytical formulae for mechanical stress and comparison with FEM models
- □ E.m. forces and mechanical stress at short sample
- □ Iron effect
- Comparison with real cross sections

Conclusions

- A simple analytical approach is presented, based on a 60 sector coil to estimate the peak azimuthal stress on coil .
- The peak stress has been related to the coil geometrical layout and to the superconductor type.
- For aperture larger than 30 mm, larger and larger coils provide higher field and lower peak stress.
- □ For Nb₃Sn coils, aperture radii <30 mm feature $\sigma_{\varphi,max}$ < 150 Mpa at short sample, regardless of the coil width.
- The use of an iron screen helps to reduce the coil width for a given *B*⁰ and aperture, implying a slightly higher stress.
- A comparison with some dipoles cross sections reveals agreement between numerical and analytical results <30%. This agreement is reduced to 10% for coils whose aspect ratio is closer to 60 sector coil (effect of the relative angle Δα).
- □ All the computations have been performed at short sample. A safety operating margin of 20% would lead to a the peak stress reduction of ~40%.
- A further reduction of the peak stress could be also achieved by designing a less effective coil, eventually increasing the number of winding turns (manufacturing and cost issue).