

PARAMETRIC ANALYSIS OF FORCES AND STRESS IN SUPERCONDUCTING **MAGNETS**

P. Fessia, F. Regis, E. Todesco Magnets, Superconductors , and Cryostats (MSC) Technology Department (TE)

contents

- Aim of the work
- Forces and Stress in Quadrupoles
	- Analytical formulae for e.m. forces and comparison with FEM models
	- Analytical formulae for mechanical stress and comparison with FEM models
	- E.m. forces and mechanical stress at short sample
	- Iron effect
	- □ Comparison with real cross sections
	- **Q** Conclusions
- Forces and Stress in Dipoles \blacksquare

…

- Aim of the work
- **•** Forces and Stress in Quadrupoles
	- Analytical formulae for e.m. forces and comparison with FEM models
	- Analytical formulae for mechanical stress and comparison with FEM models
	- E.m. forces and mechanical stress at short sample
	- **I**ron effect
	- □ Comparison with real cross sections
	- **Q** Conclusions
- **•** Forces and Stress in Dipoles

…

AIM OF THE WORK

- In superconducting magnets, large electro-magnetic (e.m.) forces and related \bullet stress are generated by the interaction of the transport current with the magnetic field.
- Mechanical stress shall be limited to avoid superconductor degradation \bullet phenomena and insulation creep.
- The $Nb₃Sn$ is considered the most suitable superconductor for new generation \bullet superconducting accelerator magnets (peak fields > 10 T). The s.c. properties of $Nb₃Sn$ are strongly dependent on the mechanical stress applied.
- **We aim at provide simple analytical tools to estimate the e.m. forces and** \bullet **mechanical stress in a superconducting coil as a function of the aperture radius** *rⁱ* **, coil equivalent width** *w***, and superconductor type (Nb-Ti, Nb3Sn).**

- Aim of the work
- Forces and Stress in Quadrupoles \bullet
	- Analytical formulae for e.m. forces and comparison with FEM models
	- Analytical formulae for mechanical stress and comparison with FEM models
	- E.m. forces and mechanical stress at short sample
	- **I**ron effect
	- □ Comparison with real cross sections
	- **Q** Conclusions
- **•** Forces and Stress in Dipoles

…

quadrupoles – coil models

Analytical coil model

- Sector coil layout at 30 (cancel the sixth order field harmonic)
- Constant current density *j(r)=j*
- Aperture radius *rⁱ*
- Coil equivalent width *w*

y

FEM coil model

- 2D FEM model ANSYS™
- Coupled analysis: magnetic-mechanical
- Magnetic analysis solves for the Magnetic Vector Potential (*A^z* component)
- Mechanical symmetry constraints on coil midplain
- Infinitely rigid collar (radial mech. constraints)

quadrupoles – analytical model validation

- Parametric analysis carried out on:
	- *1. rⁱ* : [14,28,56,84,112,140,168,196] mm
	- *2. w*: [5,10,15, 20,25, 30,35,40] mm
- *j*=1000 A/mm² regardless of the layout
- \triangleright Good agreement for the field in the aperture (*G*), worst inside the coil
- \geq On the other hand the magnetic energy and the magnetic forces are in good agreement with numerical results
- \Box <u>F_{mag} follow a linear trend with: *r_i* and w^2 </u>
- \Box F_x underestimates the numerical value of about 4%
- F_v overestimates the numerical value of $< 3\%$

quadrupoles – analytical model validation

Azimuthal stress

$$
\sigma_{\varphi}(r) = -\frac{j^{2} \mu_{0} \sqrt{3}}{16 \pi^{2}} \left[r^{4} - r_{i}^{4} + 4r^{4} \ln \left(\frac{r_{i} + w}{r} \right) \right]
$$

- $\sigma_{\varphi,\text{max}}$ overestimates the numerical value of about 5%.
- For thin coils and large apertures, the peak stress position agreement is within

Radial stress

$$
\sigma_r(\varphi) = -\frac{j^2 \mu_0 \sin \phi \alpha_0}{36\pi \phi + w^2} f_{pr} \phi^4, w^4, \varphi
$$

 $\rightarrow \sigma_{r,max}$ along the mid-plane ($\varphi=0$). \triangleright The peak radial stress overestimation is \sim 10% for large r_i and thin coils.

quadrupoles – Anisotropy analysis

- The shear effect is not taken into account \rightarrow no quantification of the material effect (Young's modulus *E*)
- Superconductor cables are anisotropic
- **Effect of anisotropy ratio** *E^r /E^φ* **has been numerically evaluated**

Er /E^φ **= [0.5,1,2,4,6,8] with** *Eφ,ref* **=13 GPa (LHC-MB outer layer)**

- $| \sigma_{\varphi,\text{max}}|$ agreement <2.5%
- *r(σφ,max)* agreement <10%
- > Larger errors at the inner radius, where the impact on superconductor performance is second order

No considerable difference in peak stress due to anisotropic coil, compared to the isotropic case

• Aim of the work

Forces and Stress in Quadrupoles 0

- Analytical formulae for e.m. forces and comparison with FEM models
- Analytical formulae for mechanical stress and comparison with FEM models
- E.m. forces and mechanical stress at short sample
- **I**ron effect
- □ Comparison with real cross sections
- **Q** Conclusions
- **•** Forces and Stress in Dipoles

…

Nb-Ti *i* $1 + \kappa c r_i \lambda \boldsymbol{\xi}$, w $\hat{\chi}_0$ ln 1 cB_c^* *j_c*,*Nb*–*Ti r w* 2

 $Nb₃Sn$

$$
j_{c, Nb_3Sn} = \frac{\kappa c}{2} \left(\sqrt{\frac{4B_{c2}^*}{\kappa c \lambda \gamma} + 1} - 1 \right)
$$

- *κ*: cable dilution factor, ranging in [0.23-0.35] (LHC-MQ: *κ* =0.25)
- B_{c2} : critical field (T)
- *c*: critical surface slope (A/Tm²)
- *λ=B^p /(G^c ri*) (adim)
- *γ=*ln*(1+w/rⁱ)γ0*=ln*(1+w/rⁱ)* 0.693e-6 (30 layout) (Tm^2/A)

Peak field

$$
B_p = j\lambda \blacklozenge, w \hat{\jmath}
$$

L. Rossi, E. Todesco, "Electromagnetic design of superconducting quadrupoles", Phys. Rev. 9, 102401 (2006)

quadrupoles – forces at short sample

Model input

- *κ* set to 0.3 in order to have comparable results
- r_i ranges in [14-84] mm
- *w* ranges in $[5-w(G_{sat})]$ mm

- F_{mag} proportional to j^2
- *Fmag* almost linear with the increased width
- Increase in net force *Fmag* is proportional to the ratio of critical current between two superconductors:

$$
F_{Nb_3Sn} = \left(\frac{j_{Nb_3Sn}}{j_{Nb-Ti}}\right)^2 F_{Nb-Ti}
$$

QUADRUPOLES – $\sigma_{\varphi, \text{max}}$ AT SHORT SAMPLE

r(σφ,max) obtained from the solution of an implicit equation

 The *σφ,max–G^c* curve shows a local maximum, depending on the aperture *rⁱ* , coil width *w* and dilution factor *κ*.

QUADRUPOLES – $\sigma_{\varphi, \text{max}}$ AT SHORT SAMPLE

 For aperture radii >60mm, the peak stress is close to the mechanical limit before superconductor degradation. This value is assumed to be about 150-200 MPa.

QUADRUPOLES – $\sigma_{\varphi, \text{max}}$ AT SHORT SAMPLE

 \Box T=1.9 K, $j_{c,Nb3Sn}/j_{c,Nb+Ti}$ =1.4 → $\sigma_{\varphi,max}$ doubles G_c =280 T/m (r_i =30 mm): w_{Nb-Ti} = 40 mm (1.9K), w_{Nb3Sn} =14 mm (4.2K)

• Aim of the work

Forces and Stress in Quadrupoles 0

- Analytical formulae for e.m. forces and comparison with FEM models
- Analytical formulae for mechanical stress and comparison with FEM models
- E.m. forces and mechanical stress at short sample

Iron effect

- □ Comparison with real cross sections
- **Q** Conclusions
- **•** Forces and Stress in Dipoles

…

quadrupoles – iron effect

- Using an iron yoke we increase the field gradient *ΔG* and the peak field *ΔB^p* for a given *j.*
- The expression of *j* has to be revised
- No iron saturation $(\mu_r \rightarrow \infty)$
- G_c and B_p considered as linear functions of *j*

- □ The iron effect has been analytically accounted for using the *Image Current* approach
- Collar width: *wcoll= Ryoke-r^o*
- ν_{coll} ranges in [10-50] mm
- G_c analytically derived
- \Box *B*_{*p*} numerically evaluated

quadrupoles – iron effect

σφ,max for iron (*wcoll*=20 mm) and ironless case are compared

quadrupoles – iron effect

 The iron acts as a larger coil width, but the stress-gradient relation remains essentially the same.

• Aim of the work

Forces and Stress in Quadrupoles 0

- Analytical formulae for e.m. forces and comparison with FEM models
- Analytical formulae for mechanical stress and comparison with FEM models
- E.m. forces and mechanical stress at short sample
- **I**ron effect
- □ Comparison with real cross sections
- **Q** Conclusions
- **•** Forces and Stress in Dipoles

…

QUADRUPOLES comparison with real x-sections

- Different state of the art Nb-Ti quadrupoles have been considered as a bench test for the analytical approximation.
- Both cases of coil in air and iron screened were studied at short sample.
- Reference *F*_{*mag*} computed in Roxie

• Comparison based on the equivalent coil width, leading to the same coil surface A:

$$
w_{eq} = \left(\sqrt{1 + \frac{3A}{2\pi r_i^2}} - 1\right) r_i
$$

QUADRUPOLES comparison with real x-sections

• Aim of the work

Forces and Stress in Quadrupoles 0

- Analytical formulae for e.m. forces and comparison with FEM models
- Analytical formulae for mechanical stress and comparison with FEM models
- E.m. forces and mechanical stress at short sample
- **I**ron effect
- □ Comparison with real cross sections

Q Conclusions

• Forces and Stress in Dipoles

…

Quadrupoles - conclusions

- A simple analytical approach is presented, based on a 30° sector coil to $\mathcal{L}_{\mathcal{A}}$ estimate the peak azimuthal stress on coil.
- The azimuthal peak stress at short sample shows a localized maximum; it appears that for larger coil widths the increased gradient copes with a reduced peak stress.
- In Nb-Ti coils, the peak stress is always below 100 MPa (possible insulation creep).
- In $Nb₃Sn$ coils, the peak stress can be below the assumed limit of 150 MPa for aperture radii up to 60 mm.
- A correction of the critical current density is proposed, based on a semianalytical approach.
- With an iron screen, both G_c and the peak stress increase to the same level as it would be for an ironless coil, producing the same gradient.
- **All the computations have been performed at short sample. A safety** \bullet **operating margin of 20% would lead to a the peak stress reduction of** \sim 40%.

contents

- Aim of the work
- **•** Forces and Stress in Quadrupoles

…

- Forces and Stress in Dipoles \blacksquare
	- Analytical formulae for e.m. forces and comparison with FEM models
	- Analytical formulae for mechanical stress and comparison with FEM models
	- E.m. forces and mechanical stress at short sample
	- **I**ron effect
	- □ Comparison with real cross sections
	- Conclusions

Dipoles – coil models

Analytical coil model

- Sector coil layout at 60 (cancel the sextupole coefficient in the field series expansion)
- Constant current density *j(r)=j*
- Aperture radius *rⁱ*
- Coil equivalent width *w*

FEM coil model

- 2D FEM model ANSYSTM
- Coupled analysis: magnetic-mechanical
- Magnetic analysis solves for the Magnetic Vector Potential (*A^z* component)
- Mechanical symmetry constraints on coil midplain
- Infinitely rigid collar (radial mech. constraints)

Dipoles – analytical model validation E.M. FORCES

- Parametric analysis carried out on:
	- *1. rⁱ* : [20, 30, 40, 50] mm
	- *2. w*: [15, 20, 30, 40, 50] mm
- *j*=1000 A/mm² regardless of the layout
- The analytical approach does not well describe the magnetic field inside the coil
- \geq On the other hand the magnetic energy and the magnetic forces are in good agreement with numerical results
- \Box <u>F_{mag} follow a linear trend with: *r_i* and *w*²</u>
- \Box F_x underestimates the numerical value of about 3%
- \Box F_y overestimates the numerical value of about 6%

Dipoles – analytical model validation Mechanical stress

Azimuthal stress

$$
\sigma_{\varphi}(r) = \frac{j^2 \mu_0 \sqrt{3}}{6\pi} \left[r^3 + r_i^3 - 3r^2 \zeta + w \right]
$$

- **Analytical approach:** $\sigma_{\varphi, \text{max}}$ position is ~2/3 of coil width *w*
- **□** Large aspect ratio *w/r_i*: σ_{φ,max} position at the outer radius (numerical evidence)
- $\sigma_{\varphi, \text{max}}$ usually differs of 3% with the numerical value

Radial stress

$$
\sigma_r(\varphi) = \frac{j^2 \mu_0 \sqrt{3}}{18\pi \mathbf{\text{G}} + w} f_{pr} \mathbf{\text{G}}^3, w^3, \varphi
$$

- $\rightarrow \sigma_{r,\text{max}}$ along the mid-plane ($\varphi=0$)
- The peak radial stress differs of \sim 1% with the numerical value

contents

- Aim of the work
- **•** Forces and Stress in Quadrupoles

…

Forces and Stress in Dipoles \blacksquare

- Analytical formulae for e.m. forces and comparison with FEM models
- Analytical formulae for mechanical stress and comparison with FEM models
- E.m. forces and mechanical stress at short sample
- **I**ron effect
- Comparison with state of the art cross sections
- Conclusions

critical surface parameterization

Nb-Ti

$$
j_{c,Nb-Ti} = \frac{\kappa c B_{c2}^{*}}{1 + \kappa c \lambda \mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{t}}}}}}}}}\sqrt{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{t}}}}}}}\sqrt{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{t}}}}}}}}}
$$

$$
j_{c, Nb_3Sn} = \frac{\kappa c}{2} \left(\sqrt{\frac{4B_{c2}^*}{\kappa c \lambda \gamma} + 1} - 1 \right)
$$

- *κ*: cable dilution factor
	- \cdot κ _{Nb-Ti} ranges in [0.23-0.3]
	- \cdot *κ* _{Nb3Sn} ranges in [0.26-0.48]
- B_{c2} : critical field (T)
- *c*: critical surface slope (A/Tm²)
- *λ=B^p /B0* (adim)
- *γ=wγ0*=*w*6.93e-7 (60 layout) (Tm²/A)

Central field $B_0 = j\gamma_0 w$

Peak field $B_p = j\lambda \xi, w \dot{\chi}_0 w$

L. Rossi, E. Todesco, "Electromagnetic design of superconducting dipoles based on sector coils", Phys. Rev. 10, 112401 (2007)

dipoles – forces at short sample

\Box *j* increases of about 30-40% using Nb₃Sn instead of Nb-Ti, depending on the geometrical layout

- F_{mag} proportional to j^2
- *Small w*: higher central field matches higher forces for a cable add-on
- *Large w*: force trend tends to saturate together with B_0 for a cable add-on

Model input

- *κ* set to 0.35 in order to have comparable results
- r_i ranges in [20-60] mm
- *w* ranges in [5-80] mm

$DIPOLES - \sigma_{\varphi, max}$ AT SHORT SAMPLE

Decrease in *j 2* rules over the increase of the geometrical factor

- For larger coil width, higher field are achieved reducing at the same time the peak azimuthal stress.
- This effect increases for larger apertures

$DIPOLES - \sigma_{\varphi, max}$ AT SHORT SAMPLE

For r_i <20 mm, the assumed limit of 150 MPa is not constraining the coil size. Less efficient but larger coil could bring the peak stress down (cost issue) r_i =30 mm, and B_0 =15 T: κ =0.25 leads to $\sigma_{\varphi, max}$ =130 MPa, but ω =60 mm is required

$DIPOLES - \sigma_{\varphi,max}$ AT SHORT SAMPLE

 \Box T=1.9 K, $j_{c,Nb3Sn}/j_{c,Nb-Ti}$ =1.5 → $\sigma_{\varphi,max(Nb3Sn)}$ =2.2 $\sigma_{\varphi,max(Nb-Ti)}$ B_0 =12 T (r_i =30 mm): w_{Nb-Ti} = 80 mm (1.9K), w_{Nb3Sn} =20 mm (4.2K) →σ limited

- Aim of the work
- **•** Forces and Stress in Quadrupoles

…

Forces and Stress in Dipoles \blacksquare

- Analytical formulae for e.m. forces and comparison with FEM models
- Analytical formulae for mechanical stress and comparison with FEM models
- E.m. forces and mechanical stress at short sample

□ Iron effect

- □ Comparison with real cross sections
- **Q** Conclusions

Dipoles – iron effect

- Using an iron yoke we increase the bore field ΔB_0 and the peak field ΔB_p for a given *j*
- The expression of *j* has to be revised
- We do not account for field saturation
- B_0 and B_p are then considered as linear function of *j*
- The iron effect has been analytically accounted for using the *Image Current* approach
- Collar width: *wcoll= Ryoke-r^o*
- ν_{coll} ranges in [10-60] mm, steps of 10 mm
- \Box *B*⁰ analytically derived
- B_p numerically evaluated

Dipoles – iron effect

Dipoles – iron effect

□ The use of the iron yoke allows to: increase the bore field, reduce the current density *j iron* as well as the peak stress on coil for a given layout (*κ* dependent). \Box For a given B_{0} , a smaller width can be used, facing a slightly higher peak stress (few percent).

- Aim of the work
- **•** Forces and Stress in Quadrupoles

…

Forces and Stress in Dipoles \blacksquare

- Analytical formulae for e.m. forces and comparison with FEM models
- Analytical formulae for mechanical stress and comparison with FEM models
- E.m. forces and mechanical stress at short sample
- **I**ron effect
- □ Comparison with real cross sections
- Conclusions

- Different state of the art Nb-Ti dipoles have been considered as a bench test for the analytical approximation.
- Both cases of coil in air and iron screened were studied at short sample.
- Comparison based on the equivalent coil width, leading to the same coil surface A:

$$
w_{eq} = \left(\sqrt{1 + \frac{3A}{2\pi r_i^2}} - 1\right) r_i
$$

Dipoles – comparison with real x-sections

- The difference in forces is <10% along the X-Y Cartesian directions.
- Difference in peak stress is <10%, except for Tevatron MB and HERA MB where *σφ,max* is <30% underestimated by the analytical approach.
- This effects depends on the augmented Δα angle between inner and outer layers: the higher $\Delta\alpha$, the higher the peak stress, up to ~40% (test at 1000 A/mm²).

- Aim of the work
- **•** Forces and Stress in Quadrupoles

…

Forces and Stress in Dipoles \blacksquare

- Analytical formulae for e.m. forces and comparison with FEM models
- Analytical formulae for mechanical stress and comparison with FEM models
- E.m. forces and mechanical stress at short sample
- **I**ron effect
- □ Comparison with real cross sections
- □ Conclusions

- \Box A simple analytical approach is presented, based on a 60 sector coil to estimate the peak azimuthal stress on coil .
- The peak stress has been related to the coil geometrical layout and to the superconductor type.
- For aperture larger than 30 mm, larger and larger coils provide higher field and lower peak stress.
- For Nb3Sn coils, aperture radii <30 mm feature *σφ,max<* 150 Mpa at short sample, regardless of the coil width.
- \Box The use of an iron screen helps to reduce the coil width for a given B_0 and aperture, implying a slightly higher stress.
- A comparison with some dipoles cross sections reveals agreement between numerical and analytical results <30%. This agreement is reduced to 10% for coils whose aspect ratio is closer to 60 sector coil (effect of the relative angle Δa).
- **All the computations have been performed at short sample. A safety operating margin of 20% would lead to a the peak stress reduction of ~40%.**
- A further reduction of the peak stress could be also achieved by designing a less effective coil, eventually increasing the number of winding turns (manufacturing and cost issue).