

PLANS FOR FPGA IRRADIATION and TESTING

LH

Ray Mountain, Marina Artuso

Syracuse University

OUTLINE:

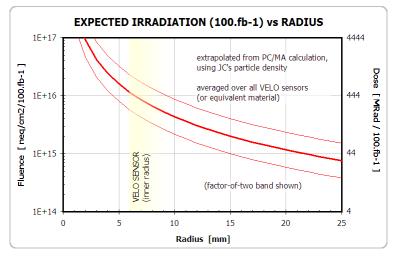
- 1. Irradiation Levels
- 2. Plans @ Syracuse
- 3. Irradiation Facilities
- 4. Solicitation

IRRADIATION LEVELS

Irradiation level for FPGAs near VELO

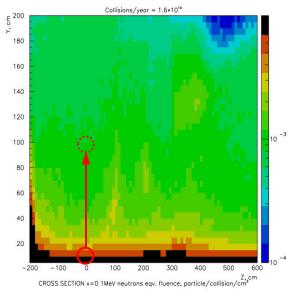
- Current best estimate of expected irradiation of VELO sensor for 100.fb⁻¹
- Extrapolate from sensor to 1 m distance (approx. location of repeater cards)
- Get: 20-70 MRad / 100.fb⁻¹
 - or $(0.5-1.5) \times 10^{15} \text{ neq/cm}^2 / 100.\text{fb}^{-1}$

(Range is envelope of different extrapolation methods)


- Large and problematic number

Irradiation level for FPGAs elsewhere

- In nearby corridor (requires some additional shielding), cable distance ~10 m
- At balcony, cable distance ~20 m
- Either location gives few kRad/10.yr, which scales up to: few 10 kRad / 100.fb⁻¹
- More manageable level


Sets scale of problem for VELO upgrade

(REF: 100 fb⁻¹ = 5 yr @ 2×10^{33})

VELO Upgrade News - Collins - velo.upg.090324

1 MeV neq fluence map in vertex region

LHCB Radiation Background - Corti & Shekhtman - Ihcb-2003-083

R. Mountain, Syracuse University

Intermediate FPGA for Multiplexing - van Beuzekom - velo.upg.081114

PLANS @ SYRACUSE

Just at the beginning of our program at Syracuse...

Purpose: To investigate likely FPGAs for use in VELO upgrade (specifically but not exclusively for pixel application)

Actel RTAX-S series (radiation tolerant)

RTAX-S/SL offers high performance at densities of up to 4 million equivalent system gates and 840 user I/Os for space-based applications. The RTAX-S/SL family, the leading Actel product offering for space applications, features SEU-hardened flip-flops implemented without any user intervention, and offers the benefits of user-implemented triple module redundancy (TMR) without the associated overhead.

Xilinx Virtex-4 QPro-V series (radiation tolerant)

Summary of Radiation-Tolerant Virtex-4 QPro-V Family Features

- Full V-Grade manufacturing and process flow
- Guaranteed operation over full military temperature range (-55°C to +125°C)
- Guaranteed 250 krad (Si) total ionizing dose per method 1019
- Guaranteed SEE latch-up Immunity to LET > 100 MeV/mg-cm² per method 1020
- Fully characterized for space radiation effects in heavy ion and proton environments
- SEU mitigation support with TMRTool software
- Fully tested configuration management IP cores available.
- High reliability ceramic flip-chip packaging technology
 - Three device architectures: LX/SX/FX XQR4VLX200:
 - High-density logic applications solution
 - Over 200,000 logic cells
 - XQR4VSX55
 - High-performance solution for digital signal processing (DSP) applications
 - XQR4VFX60/140:
 - High-performance, full-featured solution for embedded processing platform applications
- Xesium clock technology
 - Digital clock manager (DCM) blocks
 - Additional phase-matched clock dividers (PMCD)
 - Differential global clocks

- XtremeDSP slice
- 18 x 18, two's complement, signed multiplier
- Built-in accumulator (48-bit) and adder/subtracter
- Smart RAM memory hierarchy
- Distributed RAM
- Dual-port 18-Kbit RAM blocks
- Optional pipeline stages
- Optional programmable FIFO logic automatically remaps RAM signals as FIFO signals
- High-speed memory interface supports DDR and DDR2, SDRAM, QDR-II, and RLDRAM II.
- SelectIO[™] technology
- 1.5V to 3.3V I/O operation
- Built-in ChipSync[™] source-synchronous technology
- Digitally controlled impedance (DCI) active termination
- Fine-grained I/O banking (configuration in one bank)
- Secure chip AES bitstream encryption
- 90-nm copper CMOS process
- 1.2V core voltage IBM PowerPC RISC processor core (FX only)
 - PowerPC 405 (PPC405) core
 - Auxiliary processor unit interface (user coprocessor)
- Multiple Ethernet MACs (FX only)

Basic plan:

- Spec out a likely FPGA
 - Actel RTAX-S series
 - Xilinx Virtex-4 QPro-V series
- Construct a mini-dag with prototype board
- Develop coding to configure and exercise chip
 - Bench tests to validate procedures for measurements to be made (given below)
- Develop and test irradiation setup
 - Mechanical, cooling, power, etc.
- Move to irradiation facility (see next slide)
- Irradiate it
- Tests to be made:
 - Irradiate device with power on and
 - Configure / read back configuration file to determine probability of corruption of static registers
 - Write / read back dynamic registers to measure SEU rate (e.g. counting)
 - Measure SEE cross-sections for bit-flips, configuration loss, latch-up, transient effects, high-speed operation, etc.
- Establish mitigation strategies, etc.
- Iterate with other likely FPGAs as necessary _

FALL

- Optional pipeline stages

IRRADIATION FACILITIES

		IRRADI	ATION	FA	CILIT	IES	·	
Facility	Radiation Source	Irradiation Level	Exposure [MRad/hr]	Time	(min) MRad	Used by	Ref.	Comments
HADRONS								
IUCF Indiana University Cyclotron Facility, Bloomington IN USA	30-200 MeV p (Cyclotron)	1e2–1e11 p/cm2.s (3.6e14 p/cm2.hr max)	9.6	5.2 hr	\$ 3,266	many		DD tests, RERS-1,2 p beamlines, max p flux has 2 cm spot diam, beam available 0700-1900 (12 hr day), max 1e11 only available at night and sometimes on weekends, exposure durations: a few seconds upward routinely available
IUCF Indiana University Cyclotron Facility, Bloomington IN USA	(PL-7 Linac)	4e8 neq/cm2.s (1.5e12 neq/cm2.hr)	0.07	750 hr	\$ 470,250	many		DD, SEU (n), LENS/NREP, n-flux at max pwr 10 cm from moderator chamber >1e11 n/cm2.s (exp), dose for 1e10 n/cm2 fluence 10 cm from moderator chamber <3 rad (Si) (per sec?), prod Be(p,n)X cont E spectrum
CERN Irradiation Facility, PS, East Hall, CERN, Geneve CH	24 GeV/c p (CERN-PS IRRAD-1/3/5)	1-3e13 p/cm2.hr (~2-9e9 p/cm2.s CB)	0.80	62.5 hr	?	many	irradiation.web.cer n.ch	irrad area ~ 2 x 2 cm2, min ~ 1.5e11 p/spill, CPS==> 14 or 18 cycles of 1.2 s, 1 EASTA or 1 EASTC = 2 cycles (2.4s), 1 slow extraction = 400-500 ms
CERN Irradiation Facility, PS, Cast Hall, CERN, Geneve CH	from 25 GeV/c p (CERN-PS IRRAD-2/4/6)	0.3-1e12 neq/cm2.hr (~1-3e8 neq/cm2.s CB)	0.04	1125 hr	?	many	irradiation.web.cer n.ch	max sample size is ~ 30 x 30 x 30 cm3, possibile to have electrical cabling, IRRAD-2: fast n ~1.MeV (down to 50 KeV?), IRRAD-4: slow n, IRRAD-6: mixed hadrons (p p+ p- n g) for TID, SEE, etc
Boeing Radiation Effects Laboratory (BREL), Space & Defense Sytems, Seattle WA USA	14 MeV n (Kaman A711 n-generator)	1e10 n/cm2.s monoenergetic 14 MeV				JPL	IEEE.REDW(08)21 www.boeing.com/ assocproducts/radi ationlab/	Target area (max) limited only by room and doorway
Sandia National Labs, Albuquerque NM USA	1 MeV eq n (SPR-III reactor)	8.9e12 n/cm2.s 1 MeV Si equiv	1424.0	0.04 hr	\$ 3,561	Boeing		
Ljubljana Neutron Irradiation Facility, Reactor Center, Jozef Stefan Institute, University of Ljubljana, Ljubljana SI	n, cont. E spectrum (TRIGA Mark II reactor)	< 5e12 n/cm2.s fast n	~9.2 ?	5 hr		LHCB, RD50		fast neutrons (E>100 keV), damage constant 0.9, thermal (E<0.5 eV), flux ratio thermal/fast \sim 2; irrad areas: circ r=2.2 cm, ellipse r = 5, 7 cm by 15 cm max len;
Louvain-la-Neuve, Université Catholique de Louvain, Centre de Recherche du Cyclotron (CRC), Institut de Physique Nucléaire, Louvain BE	n from 50 MeV d (isochronous cyclotron)	6.6e12 n/cm2.s typ 20.4 MeV ave (T2-line)	~12.2 ?	4 hr		RD50		neutrons from 9Be(d,n)X using 50 MeV deuteron beam and subsequent induced activity foil interactions;

NOTES: - REDW = Radiation Effects Data Workshop

SOLICITATION

Would like to gather together a list of what people are interested in doing in terms of irradiation tests. Useful input:

- Which device(s) you want to irradiate
- Level of irradiation expected at the location of your FPGA
- What irradiation species (p,n) you prefer
- Specification of tests of interest to your group
 - List out details of what it is you want to test, and how to test it
 - Can we develop common algorithms to spec all devices? Establish common criteria for acceptable irradiated FPGA performance?
- Configuration files relevant to your application
- Rough schematic of system to be tested (dimensions, requirements in terms of services, etc.)
- Rough schedule of when you think it would be available for irradiation.
 - Syracuse plans are for irradiation in Fall 2009
- Assume apparatus self-contained and transportable to remote site
- Other issues of common interest?

will circulate an email request for this info