
April 9th 2009 Jacques Lefrancois1

Data transmitted
• Now from FEPGA to SEQPGA to CROC

• 12bits of ADC +8 bits trigger+1 bit antiparity
• 36 serialized data :

• 2 zero words+ 1Header word BXID EvtID
• 1 control word (derandomiser empty, clock parity, calibration data bit …)
• 32 words 21 bits (ADC data + trigger + antiparity)

• New Card from FEPGA to GBT
• 12 bits ADC X32
• Suggest to keep only the result of trigger calculation in the TrigPGA

• 8 bits Max value
• 5 bits address of Max value
• 8 bits sum of 32 channels x8bits
• 8bits BXID

• Result 32X12 +29 = 413 + some antiparity bits?

April 9th 2009 Jacques Lefrancois2

Cost vs number of optical fiber link
• 200 euros per fiber link
• A Tell 40 evaluation is 20Keuros for about 100-120 fibers from

J-P Cachemiche
• http://indico.cern.ch/getFile.py/access?contribId=6&resId=0&materialId=

slides&confId=48992
• Electronic upgrade meeting February 2nd 2009
• Optimistic?

• Total cost about 400 euros /fiber
• If enough fibers and enough data in one Tell40, could one do 2D

zero suppress in Tell 40: 2 crates => about 28 cards =>84-112
fibers???

http://indico.cern.ch/getFile.py/access?contribId=6&resId=0&materialId=slides&confId=48992
http://indico.cern.ch/getFile.py/access?contribId=6&resId=0&materialId=slides&confId=48992

April 9th 2009 Jacques Lefrancois3

Packing in Tell1

April 9th 2009 Jacques Lefrancois4

Present Decision 4-12 bits in Tell1
• Part of packing is for trigger data dropped in the upgrade.
• Before packing average ADC value is 256.5
• If the ADC value is between 248 and 263 =>subtract 248 and get

4bit value
• Otherwise give original 12bits

April 9th 2009 Jacques Lefrancois5

Scheme without compression
• 384 +29 bits minimum =413 need more than 5X80 need 6 fibers

=>480bits
• Use extra space for Card and crate address+Fiber address +

antiparity? =10 bits
• Use BXID in each Fiber? Use crate and Fiber address in each

Fiber? Antiparity in each Fiber?

April 9th 2009 Jacques Lefrancois6

Data to be sent
• For reason of architecture simplification and to keep reserve

data throughput possibility => decide to have 4 Fibers one fiber
(80 bits dat) per FPGA of 8 channels

• In each fibers some fixed data for each beam crossing
• 6 bits of trigger information (1/4 of full trigger info) =>8?
• BXID info 8 bits?
• 8 bits pattern of 4bits or 12bits ADC data for example:

11000010
• 8 times 4bits of ADC data => 32bits (it may become 40 bits if we

decide to switch short ADC to long ADC at 5bits instead of 4)
• Depending on event from 0 x8bits to 8X8bits for long ADC data
• Total data length from 56 to 120 or 64 to 128: data has to be

organised by bytes

April 9th 2009 Jacques Lefrancois7

Sequential Scheme
• In a sequential scheme (a la Tell1) one could send successive

event of variable length in the GBT
• if all data is in miniblocks of 8bits as it seemed in the previous

slide one could have 8FIFO but each would nevertheless have to
work at 16X 40MHz =640MHz to build up from 128 bit string to
80bit every 25ns

• This is unreasonable for ProAsic 3E or 3L whose RAM seems
limited to 250MHz

• However with some multiplexing it might become feasible =see
transparency 13 and after

April 9th 2009 Jacques Lefrancois8

Fixed format scheme
• Another possibility is to prepare data in a quasi fixed format 80

bits wide in FPGA dual port RAM
• Because of some needed manipulation one has to alternate

between two such RAM 256 bits deep (it should be enough to
derandomize, if needed could go to 512)

• Part of the Data has a fixed format
• 6bits trigger +1 : FPGA +card+crate address, +1: data quality (i.e. no

overflow)
• Since the address is fixed it can be 1 bit wide and n-bit deep

• 8bits BXID
• 8bits map of 4(or5) bits and full 12bits ADC
• 8X4 or 8X5 low value ADC content 32 or 40
• This takes 64 out of 80 bits available each 25ns

• Use the 16 bits left to write two 8 bits ADC data If more data
are to be written one uses more lines. If less data less lines

April 9th 2009 Jacques Lefrancois9

Example of 4 first lines out of 256
address data quality trigger BXID short data map long data

1bit 1bit 6bits 8bits 40 bits 8 bits 8bits + 8bits
1 0 110001 00000000 01…101.. 00000000 01010111 01001100
1 0 001101 00000001 00….11… 01000000 10001110 00100111
0 0 010001 00000010 10….01…. 00110010 00011100 11100000
0 0 000011 00000011 000…11… 11000110 11100011 01110101

The colour indicates which long data is coming from which event.
From the map it is easy to reconstruct which long data comes from

which ADC of which event
As long as there are less than 512 long data in 256 events with 8 ADC

there is no overflow. (Seems OK: Monte CARLO test ongoing)
If the sum of the map bits at 1 reaches 512 before the end of the 256

samples the data quality bit is put at one indicating overflow until
the end of the 256 lines.

April 9th 2009 Jacques Lefrancois10

How to write the long data
• One uses the fact that dual port RAMs in FPGA can be written

and read in different format
• For each 25ns sample one writes the 64 bits, corresponding to

the fixed format, in a RAM 256 deep (4 X 4096 bits blocks)
• One writes in a RAM 8X8bits wide and 256 deep the 8 possible

long ADC data some of these (the ones corresponding to 0 in the
map) will contain meaningless data or better 0

• This RAM will be read as 8bits wide and 2K deep some of the
address will correspond to meaningless data

• Simultaneously one builds from the map data a table of pointer
of up to 512 possible address of meaningful data (11 bits address
from 0 to 2047). This pointer table can be considered as a FIFO
memory of the pointer address up to 512 deep

April 9th 2009 Jacques Lefrancois11

The pointer FIFO and the readout
• Because the pointer FIFO is up to 512 deep and not 256 it has to be

built and used at 80MHz which is not a problem in the ProAsic3 or
the AX500

• To be safe from timing conflict it is needed to alternate between
two RAM systems every 256 X25ns => no problem each system
needs only 9 blocks of 4Kbit RAM

• One start to read the 8 bits-map RAM at the start of the cycle if
there is 0 in the map this is done one line/25 ns if there are 1's in
the map the FIFO has to be written and the next readout can be
delayed by up to 8X12.5ns (perhaps 6X12.5ns). The worse case is
192 lines of 00000000 followed by 64 lines of 11111111. The writing
of the FIFO is finished 192+256 clock cycles after the start < 512.
512 is the time allowed since there are two alternate system

• The read-out on the GBT starts 256 cycle after initial read-in and
ends 512 cycles after

April 9th 2009 Jacques Lefrancois12

Conclusion on fixed format
• A " fixed format scheme" can be implemented to compress data

without requiring clock cycle faster than 80MHz
• The scheme implies some desynchronisation of "long ADC"

data up to 256 clock cycle . However it has the advantage that
the data in all fibers all cards and all crates are synchronized
which can be useful in simplifying event building in the TELL40

• Further saving => 3 fibers/card would probably not have
enough bandwith and it is very ackward to go from 4FPGA to
3Fibers

April 9th 2009 Jacques Lefrancois13

Sequential: the organisation
• As mentioned before the needed frequency to manipulate bytes

is too fast to directly use the FPGA RAMS
• A way out is to quadruple the system writing in turn in 4

memory systems, storing 256 events in each system. The
available time to do byte manipulation on 256 events in one
system is then 256X4X25ns = 25.6microsecond

• A first memory 128 bits or 16 bytes long 256 deep (8 blocks) is
used to store incoming data (data is defined as the previous 128
bit string of transparency 9) THIS IS CALLED RAM1

• RAM1 is rotated to become 8 blocks of 1 bit wide 4096 deep. At
a given address of the 8 blocks the 8bits are one of the original
bytes. The 16 bytes of an event are at successive address.

• RAM2 will be the target RAM it has 5 blocks of 8 wide (the
bytes) and 512 deep. It will be read at 80 MHz to form 10 X
8bits every 25ns in the GBT during 256 clock cycles.

April 9th 2009 Jacques Lefrancois14

The transfer
• RAM1 consist of successive 16 bytes. The first 8 are the fixed

data which have to be transferred. The next 8 are long ADC
some of which will be a byte with 8 zero's. These 0 should not be
transferred.

• Reading RAM1 at 160MHz one can go thru the full 4096 in the
allowed 25.6 microsec. The bytes are written in RAM2, cycling
thru the 5 blocks with multiplexer and then thru the address. It
is like a IJ address I from 0-511 J from 0 to 4. If a line of 0 is
detected when reading RAM1 (among the 8 long ADC) no
writing in RAM2 is done and the IJ counter is not incremented

• At the end we have packed data in RAM2. What is not elegant is
that most of the time the packed data is << than 256X80 the last
part is irrelevant but will be transmitted. It would have been
easier to debug if irrelevant data would be put to zero!
(discussed at the end of next slide)

April 9th 2009 Jacques Lefrancois15

The readout in the GBT
• One cannot write the data before it is produced. but the last

value of the packed data can be transferred from RAM1
25600ns after the start. So the start of the readout could be
before this 25600ns but by a time which cannot be more than
the time needed to write the minimum data in the GBT . The
minimum data is 256x8 bytes =2048 bytes Since we write
10bytes/25ns =5.12 microsec so the data is delayed by about 20-
21 microsec

• Since new data will not arrive before 25.6 microsec there is time
I believe to write zeros in the second half of RAM2 (this takes
3.2 microsec) ahead of the arrival of the next group of 256
events

April 9th 2009 Jacques Lefrancois16

A variant
• We know from the 12bit BXID which bunches has no collisions
• We could decide that all the 16 bytes of an event for such BXID

are not written in RAM2
• There are at least 33 such empty BXID out of a group of 256

events. This saves us at least space for an extra 33X8=264 bytes,
compared to the 512 usually available for long ADC bytes.

• The first or the last 80 bits word of a group of 256 should be
reserved for a header or trailer of information :total 12bit BXID
FPGA,CARD,CRATE address. BXID number after which there
is an overflow etc… The way to do this in the complicated
timing has not been worked out yet.

April 9th 2009 Jacques Lefrancois17

Conclusion on sequential method:Pro and Cons
• A possible way to do sequential readout has been found
• It request 4X(8+5) blocks =52 while a A3PE1500 has 60. We

need 6 blocks for test RAM 256 deep 8X12 bits wide =>58!
• The Pro of the method is that the data is in a format which is

probably more natural for computer treatment=> less treatment
in the TELL40. The pro is also that with the variant it allows
more fat event without overflow.

• The Con is that the data arrives with a larger delay than with
the first method. How do we recognize in the TELL40 that we
start a new group of 256 since the BXID information is not in a
fixed position. The Con is also that we stretch the use of the
A3PE1500 in memory (58 blocks) and in frequency 160MHz
and perhaps in combinatorial cells to have these 4 independent
processing systems.

	Data transmitted
	Cost vs number of optical fiber link
	Slide Number 3
	Present Decision 4-12 bits in Tell1
	Scheme without compression
	Data to be sent
	Sequential Scheme
	Fixed format scheme
	Example of 4 first lines out of 256
	How to write the long data
	The pointer FIFO and the readout
	Conclusion on fixed format
	Sequential: the organisation
	The transfer
	The readout in the GBT
	A variant
	Conclusion on sequential method:Pro and Cons

