

Low secondary electron yield carbon coatings for electron-cloud mitigation in modern particle accelerators

M.Taborelli

Introduction a-C coatings: production, characterization Tests on SPSAging Conclusions

Electron cloud

Electrons can be generated by residual gas ionization, photoemission (synchrotron radiation) or beam loss at the chamber walls. Reducing the secondary electron yield of the walls can reduce the effect

Effects:

-Pressure rise (electron stimulated desorption)

-Beam perturbation (emittance growth, bunch-to-bunch coupling)

-Heat load (V. Baglin et al.) in a cryogenic case

-Interference with beam monitors (pick-up)

Relevant for high beam currents (beam potential), short bunch spacing

Example: pressure rise in the SPS

Primary e-

Definition of secondary electron yield

number of impinging electrons (primary) SEY=

Typical quantitites:

 $\delta_{\sf max}$ or SEY $_{\sf max}$ =maximum value as a function of primary energy $\mathsf{E_{max}}$ = primary energy of the maximum

M.Taborelli TE-VSC 14.5.2009Depth: true secondaries have energy below 50eV and escape from the topmost 10-30 nm

A lot of studies in the past at CERN :

- SEY of technical surfaces, NEG, Nb ….
- Effect of thermal treatments and glow discharge on SEY of copper
- -Conditioning by beam scrubbing, especially on copper, in the lab and on SPS
- Measurements of e-cloud on SPS (e-cloud monitors)
- Experiments of e-cloud suppression in PS (clearing electrodes)
- e-cloud diagnostics by RF on PS
- Simulation of e-cloud in LHC, in SPS, in PS2, in CLIC DR

Relevance for present and future projects

SPS Upgrade, PS2, CLIC and ILC damping rings……

SPS:

-nominal LHC beam, 1.15x1011 protons in 72 bunches, 25 ns (50ns) spacing, 4 batches

- calculated threshold in the MBB dipole magnets δmax = 1.3 (G.Rumolo)

PS2:

-Similar situation witheven lower threshold

CLIC/ILC positron DR:

-e-cloud in the arcs and wigglers -secondary electrons and photoelectrons

Find a solution to examine the solution of th

- can be can be implemented in the present magnetic magnetic
- does not require bake-out require bake-
- is robu
- preserves aperture for the beam $\mathcal{L}_{\mathcal{A}}$

Aluminum triangular grooves by ALMAG. <mark>1e</mark> The LHC beast limited by the groove sharpness. The state of the SPS and **d** in the SPS dipoles with| SLAC 2008 Chambers. The chambers of the chambers. The chambers of the chambers. The chambers of t Original design for the SPS: 2mm depth,

allation..)

uum pipe wall

Maximus E.Shibata, Y.Suetsugu et al KEK

What material to start with?

No theory able to to predict the SEY for a given material

Known facts:

- in the periodic system, elements with **less electrons** (on the left side) have in general lower SEY (…and lower work function) - insulators have high SEY (electrons escape from deep layers)
- air exposed metallic surfaces have SEY around 2
- -"beam scrubbed" surfaces are covered by more **carbon**
- \rightarrow take C, which has few electrons
- \rightarrow SEY of graphite (100% sp²) is much lower than diamond (100%) sp^3), so try to make sp² and avoid sp³
- \rightarrow graphite is not very reactive, should be less affected by air exposure

Thin film coating by magnetron sputtering:

a-C preparation

4 different configurations were used:

- -Tube in coil with graphite rod (development)
- -Planar target (development)
- -Liner in tube with 3 graphite rods (for e-cloud monitors)
- -Multi-electrode geometry in MBB magnets (for SRS dip୍ଜାes) _{sc 14.5.2009}

Detector = SE1

SEM images of various coatings

a-C preparation

Measurement of SEY

characterization

SEY measurement

XPS

$$
I_p = I_s + I_c
$$

$$
\delta = I_c / (I_s + I_c)
$$

-a-C coating on copper deposited by magnetron sputtering (in Ne) -no bake-out-as expected SEY does not change for thicknesses above 50 nm

Vacuum Group

characterization

Powder, dust and particles: optical particle counter

2 StSt tubesmeasured in clean-room

-No difference in particles between coated and uncoated tube-No increase after shaking and gentle hammering of the chamber-No increase for a chamber left in air for months-Same result for size above 5 µm

Surface analysis (XPS)

Peak broadening of C1s line compared to HOP-Graphite (cleaved in air), indicating the presence of more types of carbon atoms (or bonds) No correlation of SEY with initial amount of O (6-10%)

De-convolute in two main components

-Peaks as from Jackson and Nuzzo: 284.3eV +/-0.1 eV and 285.5 $eV+/-0.1$, FWHM 1.5eV for both peaks, interpreted as sp² and sp³

 $-11-27\%$ of the intensity in the sp³ peak in a-C (no correlation with SEY values)

Structural order: Raman spectroscopy (measurements at the University of Cambridge UK, A.Ferrari group)

Extract ratio D/G and G position

M.Taborelli TE-VSC 14.5.2009

characterization

Result from Raman

Based on the ratios of D/G peaks and G position:

\rightarrow the coatings are all in the region of high **sp²** content

 \rightarrow at a more detailed level there is no obvious correlation between the Raman measured "order" and the SEY values

 \rightarrow a more systematic study is necessary to identify a possible correlation between Raman result and deposition parameters (power or pressure)

FIG. 7. Amorphization trajectory, showing a schematic variation of the G position and $I(D)/I(G)$ ratio

M.Taborelli TE-VSC 14.5.2009A.Ferrari et al PRB65

SPS tests

SPS tests

a-C coating in e-cloud monitors in SPS, MD run w28

Set-up: a-C coated liner with strip detector in 1.2KGauss field Beam: 2-3 batches, 72 proton bunches, 25 ns spacing, 450 Gev/c

-Coating CNe8 gives 10-4 times current compared to StSt, consistent with measured δmax

Summary of MD runs (2008)

NB: linear vertical scale!

SPS tests

Spatially resolved

The single stripe could be just due to ionization of residual gas; the order of magnitude is close to this

Agreement with the prediction of the simulation: above 1.3 is bad!

coating

presented »

..and then:

MBA magnet in 181 Transport and install everything in Bdg 867

cleaning

DESIGNER It was a real race and a real success EXECUTE: The electrodesists to an excellent collaboration

E-VSC 14.5.2009

SPS tests the second second

Diagnostics in the coated MBB installed in SPS:

Pressure gauges

RF transmission (F.Caspers, E.Mahner)

SPS pressure readings 28/5/09

Degassing rate for different coatings

Measured after 1h air exposure and 10h pumping

-less porous at low pressure of deposition (less voids for faster ions F.Rossi, J.Appl. Phys. 75, 3121, 1994)?

Density of the coatings

Area density measured by Nuclear Reaction Analysis (J.Colaux LARN Namur, B) The low density could be explained by porosity

Aging as a function of air (sample box) exposure time

M.Taborelli TE-VSC 14.5.2009The origin of aging is not explained yet (for instance no correlation of the initial amount of O with the SEY). For metal surfaces is known to be related to the airborne contamination (N.Hilleret et al. Ap.Phys. A76, 2003, 1085)

- preliminary…. only 2 samples for the moment

-useful for storage before installation or during machine maintenance

M.Taborelli TE-VSC 14.5.2009

aging

Rough coatings to lower the SEY

 \leftarrow \leftarrow

T. C. Scheuerlein der Stadt der Stadt der Elektrischen der Elektrischen der Elektrischen der Elektrischen der

Au black

Possible applications for …cyopumping? $\frac{1}{1}$ µm

1µm

1 μ^m

 $Mag = 10.00 K X$
EHT = 20.00 kV
Detector = SE1 1 pm

SEY coatings; C with Ne #6 on Au black #3; tilted 60°

C/Au black

 $Mag = 10.00 K X$ S. HEIKK $EHT = 20.00$ kV Date :19 J Detector = SE1 File Name = CNe6-onA

C.S. C.S.

C/Z

SEY coating; (C with Ne #9) with rough Zr #3; 15.7.2008; tilted 60°

S. HEIKKINEN TS/MME/MM Date: 1 Aug 2008 File Name = CwithNe9-with-roughZr3-04.tif

roughness

C HT/HP

 $10 - 20$

Vacuum

-advantage: low SEY, possibly less sensitive to aging -disadvantage: 2 subsequent coatings, more outgassing due to larger effective surface (?)

Photon Stimulated Desorption at ESRF

D31Angle of incidence = 25 mrad

Photon Stimulated Desorption

Tests at CesrTa (Cornell) for the damping ring case

-For damping rings (CLIC, ILC): e-cloud in arcs and wigglers -Photons! The photoyield (PY) also plays a role -Strong e-cloud for δmax>1.3 independently of PY -For lower SEY it depends on PY

Conclusions

-a-C coatings with low SEY are successfully produced by magnetron sputtering

-they demonstrate e-cloud supression in e-cloud monitors -Are under test in real MBB dipoles for e-cloud, vacuum and for robustness in accelerator environment

Next:

-investigate the aging in air and various gases -characterization in ESD-optimize deposition in MBB and MBA dipoles (uniformity etc..) -optimize the width to be coated with tests in e-cloud monitors -develop the logistics for the implementation of the coating operations in the SPS cavern (transport and coating strategy, cleaning process before coating……)

This work is the fruit of the collaboration of :

SPSU team, chaired by E. Shaposhnikova

EN-MME

DG-SCR

TE-MSC

TE-VSC

LARN-Namur (J.Colaux, S.Lucas) University Cambridge (A.Ferrari) ESRF (R.Kersevan)

Thank you so much!

Effect of bunch spacing

a-C coatings in the e-cloud monitors in 2008

In addition two reference liners: StSt with δmax measured as **2.5** and TiZrV (activated) with δmax **1.1**

M.Taborelli TE-VSC 14.5.2009

SPS tests

Range of degassing wrto StSt after 10h

SEY of the inserted materials

 $G, \sim 0$ δ max=1.1 fully activated

 $C#4$, (scrub. run), δ max \sim 1.4 for 2h air exp. (measurements at 500eV only)

 $C#8$, (MD) δ max=0.95 for 2h air exp.

 SS , δmax=2.5 for 2h air exp.

