The CBM Silicon Tracking Station and CBM-related ASIC developments

Christian J. Schmidt
3rd Annual MT Meeting
Jan. 31st to Feb. 2nd, 2017, GSI, Darmstadt, Germany
FAIR - Facility for Anti-Proton and Ion Research, Darmstadt

GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany

p to U beams, 2 – 45 GeV/nucleon highest intensities

1 km circumference
FAIR - Facility for Anti-Proton and Ion Research, Darmstadt

Photo of the construction site taken on July 27, 2013 (photo: Jan Schäfer for FAIR)
The Compressed Baryonic Matter Experiment

- Ring Imaging Cherenkov Detector
- Transition Radiation Detector
- Resistive Plate Chambers (TOF)
- Electro-magnetic Calorimeter (parking position)
- Projectile Spectator Detector
- Silicon Tracking Stations
- Dipole magnet
- Vertex Detector
- Muon Detection System (parking position)
- HADES
Heavy-ion collisions

U+U 23 GeV/A

$t=-17.14 \text{ fm/c}$
Charged-particle tracks, collider experiment

TPC detector
CBM technological challenges

fixed target configuration makes 10MHz Au+Au interaction rate feasible at FAIR

- determination of (displaced) vertices ($\sigma \approx 50 \, \mu\text{m}$)
- identification of leptons and hadrons
- fast and radiation hard detectors
- free-streaming readout electronics
- high speed data acquisition and high performance computer farm for online event selection
- 4-D event reconstruction
Diagnostic probes

- charm
- prompt γ
- thermal γ
- Φ, Ξ, Ω
- $\rho \rightarrow e^+ e^-$
- decay γ
- K, π, Λ, η
- resonance decays
CBM-STS

- Low-mass micro cables from sensor to FEE
- 1.8 Mio channels, cooling power ~ 40 kW
- selftriggering ASIC readout

- ~ 3 sqm active sensor area
- double sided strips 7.5°, 58µm pitch
- 8 Stations,
- 106 ultra-light carbon ladders
- 896 Sensor modules
The CBM-Silicon Tracking System STS

Core CBM detector system:
• to provide track reconstruction
• momentum determination of secondary particles.

C.J. Schmidt, GSI Detector Laboratory
Assembly of double sided strip detector modules, a collaborative effort

- prototyping ongoing

- Topical workshop on radiation induced surface effects in silicon detectors, Oct. 2016 at KIT
the Silicon-Sensor-Module

STS-module-components:

- front-end-boards
- signal transmission cable
- double-sided silicon microstrip sensor

C.J. Schmidt, GSI Detector Laboratory
Module Electronics Allocated on Cooling Shelves

Read-out Boards, Power Boards

Cooling plate

Front-end Electronics Boards

bi-phase CO₂ cooling system
STS electronics total: 42 kW
Silicon microstrip sensors

- 300 µm thick, n-type silicon
- double-sided segmentation
- 2nd metal routing lines
- 1024 strips of 58 µm pitch
- strip length 2/4/6/12 cm
- angle front/back: 7.5/0 deg
- read-out from top edge
- rad. tol. up to 10^{14} n_{eq}/cm2

C.J. Schmidt, GSI Detector Laboratory
Module-Components:

silicon-microstrip-sensors

number of stripes: 1024
pitch of the stripes: 58 µm
pitch of the bond pads: 116 µm in two staggered rows

fill gaps at beam hole

few sizes, small numbers

62 mm x 22 mm

62 mm x 42 mm

62 mm x 62 mm

62 mm x 124 mm

strip orientation at 58 µm pitch

7.5 deg (front/p)

0 deg (back/n)

connectivity, r/o direction

2nd metal interconnect required

C.J. Schmidt, GSI Detector Laboratory
Additional spacers (PI-mesh) are placed between two signal layers to reduce the capacitance contributions from the adjacent connecting layers. Shielding layers reduce the noise level and prevent shorting between the stacks of cables.

C.J. Schmidt, GSI Detector Laboratory
module-components:
signal transmission cable, version 1

version 1: Aluminum on Polyimide-cable from LTU/ Kharkiv, Ukraine

signal layer: 64 Al lines of 116 µm pitch, 10 µm thick on 14 µm polyimide, lengths up to 55 cm

A set of 32 microcables with different cable types is needed for one module!
Read-out cables
32000 analogue cables of 64ch needed

cable stack: \textit{thickness} 0.230 \% \chi_0

\text{spacer layer}

64 traces per cable

signal layer: 64 Al lines of 116 \mu m pitch, 10 \mu m thick on 14 \mu m polyimide, lengths up to 55 cm

challenge: production yield of upto 50cm long cables \rightarrow low yield = uncalculable project duration

C.J. Schmidt, GSI Detector Laboratory
Carbon fiber ladders

11g for 1m long ladder

C.J. Schmidt, GSI Detector Laboratory
assembly-step 1: Chip cables: TAB-bonding of microcables to the readout chip

- Bottom and top layer of the microcables, TAB-bonded to the 8 STS-ASICs for one sensor side.
- Fixing of the microcable with vacuum and alignment.
- TAB-bonding of microcables: TAB-bonding of the microcables to the readout chip.
- Two layers of microcables, TAB-bonded to a dummy-ASIC and protected with Globtop after QA-measurements.
Micro Cable Technology with TAP-Bonding

- double cable layer bonded onto chip
assembly-step 2: TAB-bonding of chip cables to the silicon sensor

- fixing of the microcables with vacuum and alignment
- TAB-bonding of 16 microcables to the sensor (two rows at 8 microcables)
- protection of the TAB-bonds with Globtop after QA-measurements
assembly-step 3: die- and wirebonding of readout chips to the PCB-rows

wire-bonding of the STS-YTER-ASIC’s

die-bonding of four ASIC’s for the 2nd row

application of Globtop after QA-measurements

wire-bonded STS-XYTER-ASIC

C.J. Schmidt, GSI Detector Laboratory
assembly-step 4: glueing of shielding-layers and spacers

This semi-module then turned over to the n-side of the sensor and steps 1 to 4 are repeated!
optimization of alignment jigs

C.J. Schmidt, GSI Detector Laboratory
Module-Components:

signal transmission cable, version 2

version 2: Copper-based microcables/
KIT-IPE (Dr. Thomas Blank & team)

As an alternative to the Aluminum-microcables a R&D-project has been started that investigates Copper-based cables.

Benefits of Copper:
- well known in PCB-Flexboard technology
- offers interconnected multilayer solutions
 - one cable with two layers (bottom & top) and vias
 - instead of two single Al-cables

C.J. Schmidt, GSI Detector Laboratory
Module-Components:
signal transmission cable, alternative version 2

build-up of micro-copper-cable of version 2:

<table>
<thead>
<tr>
<th>Layer Type</th>
<th>Material</th>
<th>Nominal Thickness [µm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>surface finish</td>
<td>EPIC</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>copper</td>
<td>6-10</td>
</tr>
<tr>
<td>flex</td>
<td>polyimid</td>
<td>12</td>
</tr>
<tr>
<td>adhesive</td>
<td>epoxy</td>
<td>12</td>
</tr>
<tr>
<td>flex</td>
<td>polyimid</td>
<td>50</td>
</tr>
<tr>
<td>adhesive</td>
<td>epoxy</td>
<td>12</td>
</tr>
<tr>
<td>flex</td>
<td>polyimid</td>
<td>12</td>
</tr>
<tr>
<td>L2</td>
<td>copper</td>
<td>6-10</td>
</tr>
</tbody>
</table>

surface finish:
EPIG (Electroless Palladium, Immersion Gold), thin (300 nm) noble surface for soldering and bonding in contrast to standard ENIG (5..7µm) (-> Pitch), Palladium serves as a highly efficient diffusion barrier

Resulting capacitances:
- 0.82 pF/cm with 50 µm meshed spacer
- 0.67 pF/cm with 150 µm meshed spacer

C.J. Schmidt, GSI Detector Laboratory
the module-components:
signal transmission cable, version 2

interconnection technology for version 2: Au-stud bumps + flip-chip

Ball-wedge gold wire bonding

Gold-Stud bumps
Source: J. Jordan – Gold-Stud bumps in flip-chip applications

Au-Stud bumps on STSXter-Testchip
- reliable and fast process

Ball-Wedge-Bonder

Read Out Chip or Sensor

C. Simons, GSI Detector
Module-Components: front-end-boards

STS-XYTER-ASIC
with 128 channels and pitch of 116 µm
(same as the sensor bond pad pitch)

8-STS-XYTER-board
(dummy-PCB with power and signal connectors)
STS - Module Front End Board

- very dense (101 x 31mm)
- cooling challenges (~10W)
- floating at biasing potential
- up to 40 x 320Mbps data transfer
 - in-board chip LDOs
 - point of load skimming regulation
 - powered by CERN Feast-based DC/DC converters
QA-measurements tools: Pogo-Pin Sockets

testsocket for the ASIC-TAB-bonds

testsocket for the sensor-TAB-bonds

C.J. Schmidt, GSI Detector Laboratory
STS performance simulation

- detailed, realistic detector model based on tested prototype components
- CbmRoot simulation framework
- using Cellular Automaton / Kalman Filter algorithms

C.J. Schmidt, GSI Detector Laboratory
CBM-related Chip Developments and Options

- CBM MuCH XYTER
 E. Atkin et al, MEPHi

- CBM STS-XYTER/MuCH-XYTER
 AGH Krakow, R. Szczygiel et al

- SPADIC for TRD
 ZiTi Heidelberg, P. Fischer et al
 SPADIC 2.0 with e-link interface

- CBM-GBTx Chipset ordered from CERN

- GET-4 TDC (TOF)
 H. Flemming, H. Deppe, GSI

- PADI for TOF
 M. Ciobanu, ISS Bucharest

- PADI for Diamond
 M. Ciobanu, ISS

- GBTx
 FPGA emulation for VECC and JINR

- Rad tolerant LDOs
 SCL Chandigarh, India
Fully digital Read-out ASIC “STS-XYTER”

- purely data driven read-out
- time-stamped data elements
- 250kHz per channel

for every channel:
- fast branch: time-stamp
- slow branch: signal height digitization (energy)

STS-XYTER ASIC

UMC 180 nm CMOS

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>channels</td>
<td>128, polarity +/-</td>
</tr>
<tr>
<td>noise</td>
<td>< 1000 e⁻ under load</td>
</tr>
<tr>
<td>ADC range</td>
<td>16 fC, 5 bit</td>
</tr>
<tr>
<td>clock</td>
<td>160 MHz</td>
</tr>
<tr>
<td>power</td>
<td>< 10 mW/channel</td>
</tr>
<tr>
<td>timestamp</td>
<td>< 5 ns resolution</td>
</tr>
<tr>
<td>out interface</td>
<td>5 × 320 Mbit/s LVDS</td>
</tr>
</tbody>
</table>

noise minimization in self-triggering system:

effective two-level discrimination

- trigger to the timestamp latch vetoed if ADC-LSB generated no signal

Design Team:
R. Szczygiel et al. at AGH Krakow/Poland
Switchable gain (5x smaller for MUCH) + trimming 2 bit

FAST PATH for TIME MEASUREMENT

Switchable (90ns – 280ns) in 4 steps

SLOW PATH for AMPLITUDE MEASUREMENT
STS-XYTER turns into MuCH-XYTER via Gain Switch

- Submission Review in Feb. 2015: Noise is an issue →

 system issue, optimization with complete system perspective, extensive architectural studies → goal < 1000 ENC

- Submission Review in Oct. 2015 → full go for submission

- STS-XYTER 2.0: adaptation to GBTx-eLink-readout, STS-r/o protocol → intensive collaboration AGH-WUT (W. Zabolotny (DPB)) on design and verification

 - STS-XYTER defines critical path for STS!

 → all architectural elements included!
Long awaited STS-XYTER 2.0 Submission Mai 2016

...evolved to a grand CBM-Joined 6-Chip Submission

- STS-XYTER 2.0 → yield 930 chips for STS- and MUCH-prototyping

- TOF readout ASICs, Volume production for operation at STAR

 - Get4-TDC in two versions:
 - Bug-fix version
 - Version for robust operation at 40MHz

 - PADI – fast 8-channel TOF pre-amp

- SPADIC V2 → prototype run with CBM compatible e-link interface
Unpacking was solemn like X-mas.
The Readout-ASIC STS-XYTER

- The moment of truth:

 Testing is a joined AGH, WUT, VECC and GSI effort

 → **workshop on STS-XYTER testing Feb. 2017 in India**

- **Beam-time Feb. 2017 at Helmholtz FZ-J COSY: Rad. tests**
Dicing precision successful: 100µm Pogo-Pins match!
SCL realizes radiation tolerant LDOs for CBM

- Sensitivity to Total Ionizing Dose evaluated by VECC Kolkata \(\rightarrow\) OK for CBM
- Sensitivity to Single Event Upset evaluated by GSI at COSY, FZJ \(\rightarrow\) OK for CBM

STS-XYTER single ended cascode

very sensitive to supply noise

180nm Tower Jazz Process

Semi-Conductor Laboratory

Department of Space, Government of India
CBM-TRD: Spadie 2.0 in two versions being tested

- 32-channel signal digitizer
 8bit at 16 MHz
- self triggered
- forced next neighbor trigger
- e-link interface

- Readout chip for CBM Transition Radiation Detector (allows to tell electrons from pions)
PADI, the one proven design, is available in large numbers now.

Designer: Mircea Ciobanu
Summary

- Heavy-ion physics → nucleus-nucleus collision physics
 - investigation of the properties of nuclear matter in collisions of nuclear beams
 - high charged particle multiplicities, embedded in those: “rare probes”
 - challenge: charged-particle tracking, decay topology recognition,
 - additionally: micro vertex detection

- Silicon detectors can meet the tracking requirements:
 - fine segmentation, low material budget, read-out, radiation tolerance
 - challenge: keep the sensor benefits in a realistic detector system

- Careful full system design needed
 → also several dedicated specialized microchips (ASICs)

- Outlook: We will be diving into our production phase now...
Detector Laboratory at GSI: 600 m² Clean-Room

Competences:
- Micro Patterned Gaseous Detector Technology, GEMs
- Silicon Strip Detector Integration
- ASIC Handling and Integration
- Diamond Detectors

Machinery:
- Laser Lithography
- PVD
- Bonding Automates
- Probestation and Chip Handling
- Automated Wire Winding
- Digital Microscope
- Thin Foils Handling and Processing
- Detector Ageing Teststands
- Large Prototyping CNC Milling Machine