PET: a high threshold Nuclear Track Detector (NTD) for rare event search

ATANU MAULIK
Center For Astroparticle Physics and Space Science
Bose Institute
Kolkata, INDIA
E-mail: atanu.maulik@jcbose.ac.in

How Nuclear Track Detectors (NTDs) work ?

- Heavy charged particles on their passage through materials lose energy according to the Bethe formula:
$-d E / d x=K(z / \beta)^{2} N Z\left[\ln \left(2 m_{0} v^{2} / I\right)-\ln \left(1-v^{2} / c^{2}\right)-v^{2} / c^{2}\right]$
- The ionization and excitation produced by the charged particles along their path causes molecular bonds of the plastic to break, thereby producing narrow (30$100 \AA$) damage trails. Naturally the damaged portions become chemically more reactive to suitable chemical reagents (etchants) (e.g. ionic compounds like NaOH) compared to the undamaged bulk material.

Formation of etch pits through etching

- During etching, the material along the damage trails are etched out at a much higher rate V_{T} (Track etch rate) compared to the rate of etching V_{B} also called \mathbf{V}_{G} (Bulk etch rate) of the undamaged surface. The etch pits so formed can be closely approximated by geometrical cones with the damage trail along its axis and is observable under an optical microscope.
- For track formation $\mathrm{V}_{\mathrm{T}} / \mathrm{V}_{\mathrm{B}}>1$ and corresponding Z / β is the detection threshold of the material

Etch pit image

Surface opening of a track

Conical profile of the etch pit

Charge response $\mathbf{V}_{\mathrm{T}} / \mathrm{V}_{\mathrm{B}}$

- The ratio $\mathrm{V}_{\mathrm{T}} / \mathrm{V}_{\mathrm{B}}=\mathrm{f}(\mathrm{d} \mathrm{E} / \mathrm{dx})$ and hence $\propto(\mathrm{Z} / \beta)^{2}$ of the incident ion is called the charge response of the detector
- It can be determined by studying the geometry of etch pit openings and is given by the formula:

$$
\mathrm{V}_{\mathrm{T}} / \mathrm{V}_{\mathrm{B}}=\text { Zobs } /\left[\mathrm{V}_{\mathrm{B}} \times \mathrm{t} \times \cos (\mathrm{i})\right]+1 / \cos (\mathrm{i})
$$

i : incident angle
D_{a} : major axis of etch pit openings
D_{b} minor axis of etch pit openings
$\operatorname{Cos}(i)=D_{b} / D_{a}$
Zobs : depth of the tip of the etch cone from the post-etch surface
t : duration of the etching process.

- The ratio $\mathrm{V}_{T} / \mathrm{V}_{\mathrm{B}}$ as well as the range R of the particle inside the detector are the two most important parameters which help us in identifying the particle forming the track.

Instruments

Etching tank

Leica DM 4000 M

Advantages of NTDs in rare event search

\square Such detectors have various advantages :
(a) Simplicity and ease of use: Since they do not require power for their operation it is relatively easy and inexpensive to set up large arrays, even at remote locations.
(b) Existence of natural thresholds of registration. Helps supress background.
(c) They offer a good charge resolution.

- NTDs are particularly well suited to look for heavy, slow moving, heavily ionizing particles with very low fluxes against a large low-Z background, e.g. strangelet or monopole search in cosmic rays or particle accelerators.

What are Strangelets ?

- Normal baryonic matter is composed up and down quarks
- It has been suggested by various authors [e.g.Witten (1984), Farhi(1984), Madsen(1993)] that Strange Quark Matter (SQM) consiting roughly equal number of up, down and strange quarks is the true ground state of hadronic matter
- Small stable lumps of SQM is what is being referred to as strangelets.
- Such strangelets will have a small positive charge, thus an unique experimental signature of strangelets is an unusually low charge to mass ratio (Z/A<<1/2) compared to ordinary nuclei.
- The decay of normal nuclear matter into strange matter will require about a third of the up and down quarks to transform simultaneously into strange quarks via weak interactions, making it prohibitively unlikely.

Where can SQM be found and how can they reach earth?

- SQM, if stable, is almost unavoidable in the core of dense steller objects like neutron stars.
- Strangelets may be produced when two such stars in a binary system collide.
- A strange star - black hole collision may also release lumps of quark matter.
- Certain calculations suggest a galactic production rate equivalent to $10^{-10} \mathrm{M}_{\odot} \mathrm{yr}^{-1}$
- Strangelets in many ways behave like ordinary cosmic ray nuclei and are accelerated by similar mechanisms e.g. Fermi acceleration in supernova shocks.
- Theoretical studies [Madsen (2005)] point to significant measurable strangelet flux in our part of the galaxy.

Inside the earth's atmosphere

- According to one model of strangelet propagation [S. Banerjee et.al (2000)] an initially small strangelet passing through the earth's atmosphere, would pick up mass by preferentially absorbing neutrons over protons from the nuclei of atmospheric atoms, protons being Coulomb repelled. As a consequence Z/A ratio gets even more skewed.
- At the same time the strangelet will lose energy through ionisation of the surrounding media which effectively puts a lower limit to the altitude at which it can be detected.
- For example a strangelet with initial mass ~ 64 amu , charge ~ 2 and β ~ 0.6 will evolve to mass $\sim 340 \mathrm{amu}$ and $\mathrm{Z} \sim 10-20$ at an altitude of 3.6 Km above sea level and will have $\beta \sim 0.01$. So it will have a $Z / \beta \sim 1000-$ 2000.
- The flux of strangelets at that altitude is estimated to be 510/100sq.m./yr.

Reports of events with unusual ZIA ratio

There are several observations of exotic nuclear fragments with unusual charge to mass ratio in different cosmic ray experiments.
\square In 1990, Saito et al. analyzed the data of 1981 balloon borne experiment and claimed to have identified two events which were consistent with $A \sim 370$ and $Z \sim 14$ and was explained in the scheme of strange quark matter.
\square In 1993 Ichimura et al. reported an event with unusually long m.f.p. called the 'exotic track' event with $Z \sim 20$ and $A \sim 460$. The report was based on an analysis of a 1989 balloon borne experiment using solid state nuclear track detector.
\square In a paper in 2001 Fujii et. al. reported detection of a possible SQM candidate, an anomalous massive nuclei of charge $\mathrm{Z} \sim 14$ and $\mathrm{M} \sim 370$ amu in a hybdrid system combining active (Cherenkov and scintillation)and passive detectors (CR-39) in a 19 hr balloon flight.
\square Analysis of data from AMS-01, which flew to space on board Space Shuttle Discovery, has given hints of some interesting events, such as one with $Z=8, A=54$ [Aguilar et.al.(2002)]

Ongoing searches for strangelets

- AMS-02, a magnetic spectrometer currently installed on the ISS has the search for strangelets in primary cosmic rays as one o its main scientific goals
- Our effort, using large area NTD arrays at highmountain altitudes will
be complimentary to such eforts.

Choice of NTD in strangelet search : PET

- Widely used polymer detectors like CR-39 and Lexan have low Z / β detection thresholds [for CR-39: $(Z / \beta)_{\text {thres }}>6$, for Lexan: $(Z / \beta)_{\text {thres }}>57$] compared to the predicted Z / β values of strangelets of $1000-2000$ at mountain altitudes. Will record a huge low-Z background (CR protons, radon alphas, neutron recoil tracks etc.)
- A particular brand of overhead projector (OHP) transparencies was found to be very suitable as a NTD. Elemental analysis revealed that the plastic was Polyethylene Terephthalate (PET), a matrial widely used in making wrappers and bottles with
 chemical formula $\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{4}\right)_{\text {n.. }}$. This was reconfirmed with IR spectroscopy.
- Crucially, it was found that PET has a much higher detection threshold $\left[(Z / \beta)_{\text {thres }}\right.$ $>$ 140] compared to other commercially available NTDs and as such is significantly better at background suppression.
- Another advantage of PET is that it is substantially cheaper compared to detectors like CR-39.

Ideal etching condition for PET

- The etch pit geometry depends on the temperature and the concentration of the etchant and also the duration of etching.
- The goal was to maximize the charge response $\mathrm{V}_{\mathrm{T}} / \mathrm{V}_{\mathrm{B}}$ and to see whether the track quality is good.
- An exposed PET detector was etched in NaOH soln. at three different concentrations (5.0N, 6.25 N,7.5N) and at three different temperatures $\left(45^{\circ} \mathrm{C}, 55^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}\right)$.
- It can be seen that $\mathrm{V}_{\mathrm{T}} / V_{B}$ is getting maximized at the concentration of 6.25 N and at the temp. of $55^{\circ} \mathrm{C}$. Track quality was also good.
- So we have used 6.25 N NaOH soln. at temp $55^{\circ} \pm 0.1^{\circ} \mathrm{C}$ for subsequent etching processes.

Calibration of PET

- PET films were exposed to various ion beams from diferent accelerators.
- Incident ion energies chosen to be higher than the Bragg peak energies for those ions on PET.

Detector Burnout

Experimental setups

IUAC $-{ }^{33} \mathrm{~S},{ }^{5{ }^{5} \mathrm{Fe},{ }^{35} \mathrm{Ci},{ }^{58} \mathrm{Ni}}$

Fe tracks on PET

Surface

Kr and Ti tracks on PET

The different dimensions for ${ }^{78} \mathrm{Kr}$ and ${ }^{49} \mathrm{Ti}$ tracks can be seen with the microscope focused (a) on the surface and (b) at a depth of 8.2 micron from the surface.

Calibration curve for ${ }^{16} \mathrm{O}$ - ions

- The adjoining image shows the charge response parameter V_{T} / V_{B} of PET plotted against corresponding Z / β values.
- If the response curve is extrapolated towards lower values of Z / β, we could see that corresponding to $\mathrm{V}_{\mathrm{T}} / \mathrm{V}_{\mathrm{B}}$ ~ 1 we have $Z / \beta \sim 120$
- Since $V_{T}>V_{B}$ for track formation, this indicates that
 the threshold for PET ~ 120

Experiment at IOP

CR-39 and PET films exposed to $11 \mathrm{MeV}{ }^{12} \mathrm{C}$ and 2 MeV proton beams from the particle accelerator at the Ion Beam Laboratory, Institute of Physics
(IOP),
Bhubaneswar

Experimental setup

\square PET and CR-39 films of thickness $100 \mu \mathrm{~m}$ and $700 \mu \mathrm{~m}$ respectively, were cut into pieces ($8.5 \mathrm{~cm} \times 1.5 \mathrm{~cm}$) and mounted on the different faces of a target ladder, one face of which was covered with a glowing tape for beam monitoring.

I Initially beam current was set at 500 nA to enable beam monitoring and necessary
 adjustments. Then the beam current was reduced to a very low value 0.5 nA to prevent detector burnout
\square During every run the target ladder was given one full rotation within 10 sec to irradiate all the detector films attached to the different faces.

Exposure to $\mathbf{2} \mathbf{M e V}$ proton beam

CR-39

Proton tracks after 4 hr etching

PET

No tracks could be seen even after 9 hr etching

Exposure to $11 \mathrm{MeV}{ }^{12} \mathrm{C}$ beam

\square Exposed PET detectors were etched in successive stages to determine the point where the tracks become visible and measurable.
\square As a charged particle moves through the detector, its energy is steadily reduced. This implies that the corresponding value of β decreases and Z / β increases
\square The aim was to determine the Z / β value corresponding to which the tracks become visible as it will give us the detection threshold of PET.
\square To determine the energy of the particles at different depths inside PET, the passage of the ions through PET was simulated using the standard Monte Carlo code SRIM

Energy and corresponding Z / β of carbon ions at various points inside PET

Duration of Etching (h)	Length traversed in PET (μm)	Reduced energy $(M e V)$	Correspondi ng Z/ β
1	1.3	9.74	144
2	2.6	8.43	155
3	3.9	7.08	170
4	5.2	5.68	190

Detection threshold

-Tracks due to 12C visible on PET after 1 h etching. Corresponding $Z / \beta \sim 140$
aSo Z/ß ~ 140 is the practical detection threshold for PET. But tracks too small to be measured as they fall within the margin of error of $\pm 1 \mu \mathrm{~m}$ of our
 measuring microscope.
aOnly after 4 h etching do the tracks become measurable. Corresponding Z / β ~ 190
aSo $Z / \beta \sim 190$ can be said to be the measurement threshold in PET.

Calibration curve for PET

Charge and energy resolution of PET

- The identification scheme applied to tracks of $2.82 \mathrm{MeV} / \mathrm{u}$ ${ }^{49}$ Ti ions.
- Calibration curve without REX-ISOLDE data used.
- Charge Z could be ascertained with an accuracy of ± 1
- Corresponding incident energy is 2.61 ± 0.24

Response of PET from different batches (Procured 4 yrs apart)

Detectors given open air exposures

Some parameters of the exposure sites

Place	Altitude (a.m.s.l.)	Mean Atmospheric Pressure	Geographic latitudes and longitudes	Geomagnetic latitudes and longitudes
Darjeeling	2200	780	$27.0^{\circ} \mathrm{N}, 88.3^{\circ} \mathrm{E}$	$17.6^{\circ} \mathrm{N}, 162.2^{\circ} \mathrm{E}$
Ooty	2200	785	$11.4^{\circ} \mathrm{N}, 76.7^{\circ} \mathrm{E}$	$2.9^{\circ} \mathrm{N}, 149.9^{\circ} \mathrm{E}$
Hanle	4500	580	$32.8^{\circ} \mathrm{N}, 75.9^{\circ} \mathrm{E}$	$24.2^{\circ} \mathrm{N}, 151.2^{\circ} \mathrm{E}$

Bulk etch rates of CR-39 and PET

Place	Exposure Duration (Days)	$\mathbf{V}_{\mathbf{B}}$ of $\mathbf{C R}-\mathbf{3 9}$	$\mathbf{V}_{\mathbf{B}}$ of PET
Darjeeling	532	11.7 ± 0.7	2.6 ± 0.15
Ooty	190	10.0 ± 0.6	2.2 ± 0.13
Hanle	320	11.5 ± 0.7	2.4 ± 0.13
Unexposed	-	1.4 ± 0.07	1.0 ± 0.05

Tracks on CR-39 at Darjeeling

Distribution of angle of incidence of tracks on CR-39

Distribution of minor axis diameter of tracks on CR-39 (Etching duration 4 h)

Distribution of minor axis diameter of tracks on CR-39

(Etching duration $4 \mathbf{h}$)

Distribution of V_{T} / V_{B} values of the tracks recorded on CR-39

Flux recorded on CR-39 and PET

Place	Flux on CR-39 $\left(\mathbf{c m}^{-2} \mathbf{s}^{-1} \mathbf{s r}^{-1}\right)$	Flux on PET $\left(\mathbf{c m}^{-2} \mathbf{s}^{-1} \mathbf{s r}^{-1}\right)$
Darjeeling	6.0×10^{-4}	$<1.0 \times 10^{-11}$
Ooty	1.3×10^{-4}	$<4.1 \times 10^{-11}$
Hanle	4.6×10^{-4}	$<2.4 \times 10^{-11}$

Unusual event on PET at Darjeeling

- Probability of six particles impinging one after another $\sim 2.35 \times 10^{-13}$
- We therefore favor the conclusion that six tracks comprise a single event
- Charge of the particle corresponding to each of the six unusual tracks lies between $Z=18$ to $Z=30$
- If the six fragments indeed emanated from a single vertex, the parent particle would have $Z \geq 144$
- Energy of particles $\sim 1 \mathrm{MeV} / \mathrm{n}$. This gives $Z / \beta \sim 500$

References

1. Witten, E., Phys. Rev. D30 (1984) 272.
2. Farhi, E. and Jaffe, R.L., Phys. Rev. D30 (1984) 2379.
3. Madsen, J., Phys. Rev.Lett. 70 (1993) 391.
4. Madsen, J., Phys. Rev.D71(2005) 014026.
5. Banerjee, S., Ghosh, S.K., Raha, S., Syam, D., Phys. Rev. Lett. 85 (2000) 1384.
6. Saito,T., Rev. Lett. $\underline{65}$ (1990) 2094.
7. Ichimura, M., et. al., Nuovo Cimento 106A (1993) 843.
8. Aguilar, M., et. al.,Phys.Rep. 366 (2002) 331.
9. Fuji,M., et.al.,Rad.Meas. 34 (2001) 255.
10. Ziegler,J.F.,Biersack, J.P., 2003. The Stopping and Range of Ions in Matter (SRIM Computer Code), Version:2003.26 .

Publications and patent

- Characterization and calibration of a SSNTD for heavy-ion detection and strangelet search in cosmic rays _ D. Bhowmik, S. Dey, A. Maulik, Sibaji Raha, S. Saha, Swapan K. Saha, D. Syam.
Nuclear Instrum. and Meth. B 269 (2011) 197-201
- Calibration of a solid state nuclear track detector (SSNTD) with high detection threshold to search for rare events in cosmic rays _ S. Dey, D. Gupta, A. Maulik, Sibaji Raha, Swapan K. Saha, D. Syam, J. Pakarinen, D. Voulot, F. Wenander. Astroparticle Physics 34 (2011) 805 -808
- Particle identification with polyethylene terephthalate (PET) detector with high detection threshold__S. Dey, A. Maulik, Sibaji Raha, Swapan K. Saha, D. Syam. Nuclear Instrum. and Meth. B 336 (2014) 163-166
- Observation of a rare cosmic ray event at mountain altitute__Basudhara Basu, Sibaji Raha, Swapan K. Saha, Sukumar Biswas, Sandhya Dey, Atanu Maulik, Amal Mazumdar, Satyajit Saha, Debapriyo Syam. . Astroparticle Physics 61 (2015) 88-92
- Determination of the detection threshold for Polyethylene Terephthalate (PET) Nuclear Track Detector (NTD) __S. Dey, A. Maulik, Sibaji Raha, Swapan K. Saha, D. Syam. Nuclear Instrum. and Meth. B 370 (2016) 63-66

Indian patent application [No. 1473/KOL/2011] titled "A novel solid state nuclear track detector for charged particles" filed on 18 Nov. 2011

Thank you

