

Advanced Detectors for Nuclear, High Energy and Astroparticle Physics 15-17 February 2017 Bose Institute, Kolkata, India

<u>Silicon Sensors in Experimental High</u> <u>Energy Physics Experiments</u>

<u>Ashutosh Bhardwaj</u> Department of Physics & Astrophysics University of Delhi - India

Outline

- Silicon Detectors: Historical Perspective
 Highlights
- Basics of Si detectors & Principle of operation
- Radiation Damage Mechanism
- > HPK Campaign & DU's Involvement
- Radiation Damage Modeling
- > India in CMS Outer Tracker Phase II upgrade
- Detector Development at DU
- Some Novel Detector Designs

≻Summary

- 1951: First detectors with Germanium pn-Diodes (McKay)
- 1960: Working samples of p-i-n Detectors for α & β Spectroscopy
 (E. M. Pell)
- 1964: Use of Si detectors in experimental Nuclear Physics (G. T. Ewan & A. J. Tavendale)
- 1980: Fixed target experiment with a planar diode (J. Kemmer)
- 1980-86: NA11 & NA32 experiment at CERN to measure charm meson lifetimes
- 1990ies (Europe): LEP Detectors (e.g. DELPHI)
- 1990ies & later (US): CDF & D0 at Tevatron, Fermilab
- Today: All Detectors at LHC with upto 200 m² active area (CMS)

NUCLEAR INSTRUMENTS AND METHODS 169 (1980) 499-502, © NORTH HOLLAND PUBLISHING CO

FABRICATION OF LOW NOISE SILICON RADIATION DETECTORS BY THE PLANAR PROCESS

J KEMMER

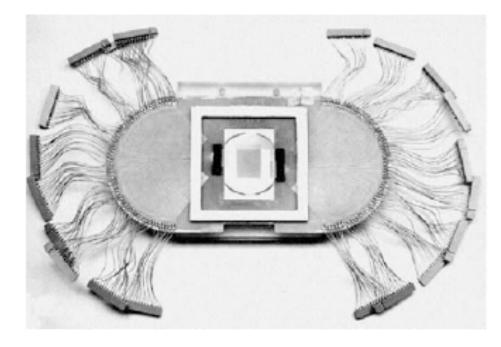
Fachbereich Physik der Technischen Universita: Munchen, 8046 Garching, Germany

Received 30 July 1979 and in revised form 22 October 1979

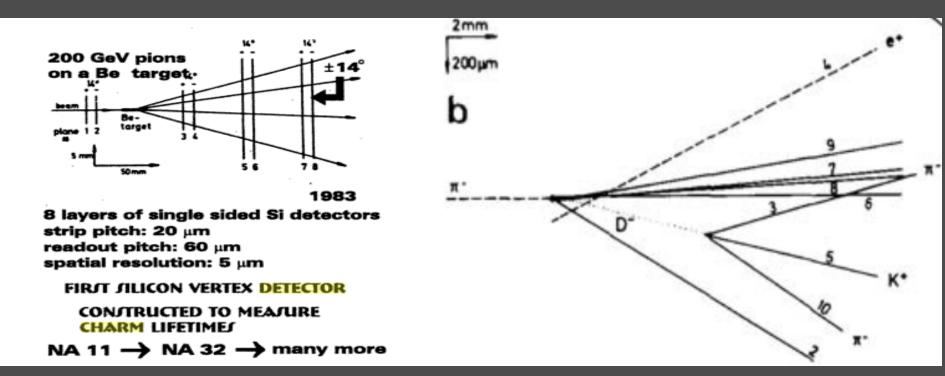
Dedicated to Prof Dr H -J Born on the occasion of his 70th birthday

By applying the well known techniques of the planar process oxide passivation, photo engraving and ion implantation. Si pn-junction detectors were fabricated with leakage currents of less than $1 \text{ nA cm}^{-2}/100 \,\mu\text{m}$ at room temperature. Best values for the energy resolution were 100 keV for the 5 486 MeV alphas of ²⁴¹ Am at 22 °C using 5×5 mm² detector chips

Why wasn't silicon used earlier?

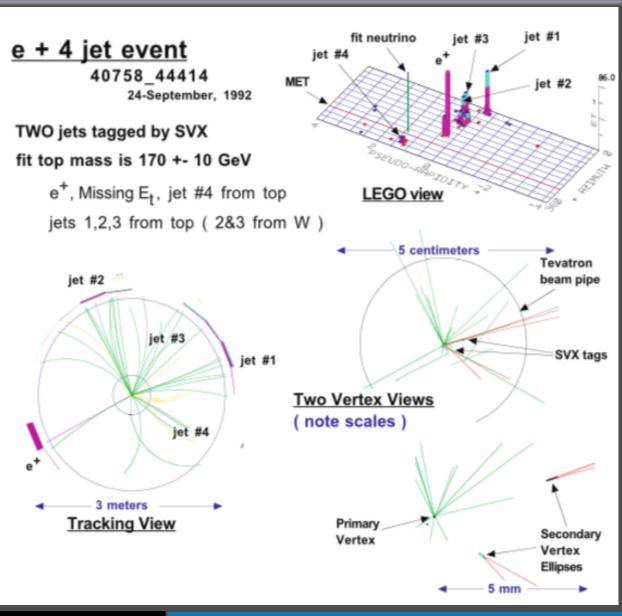

- Needed micro-lithography technology ⇒ cost
- Small signal size (needed low noise amplifiers)
- Needed read-out electronics miniaturization (transistors, ICs)

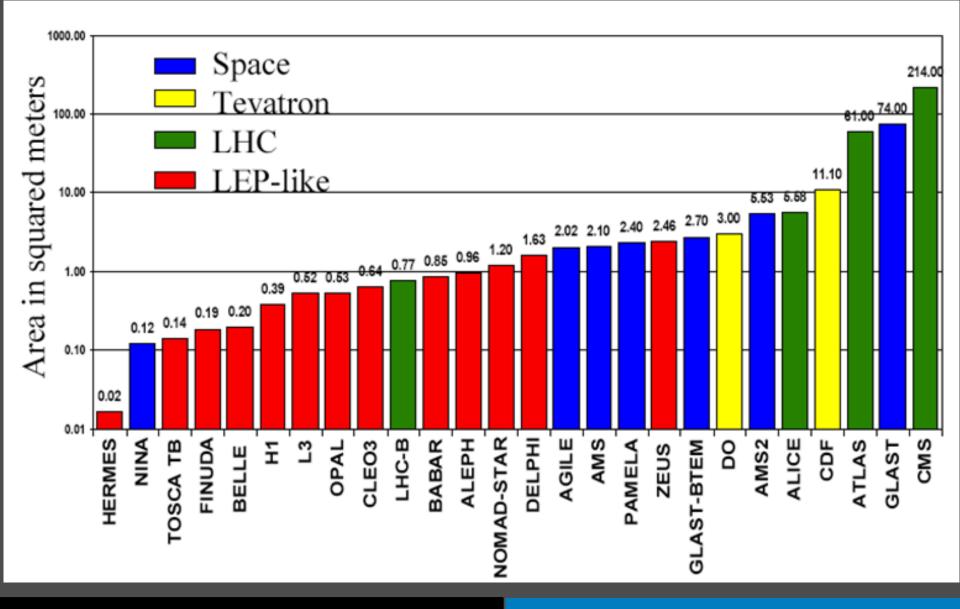
NA11 @ CERN : fixed target experiment ~ 1980


- First proof of principle to use a position sensitive silicon detector in HEP experiment
- Aim: measure lifetime of charm quarks (decay length 30 µm)
 ⇒ spatial resolution better 10µm required

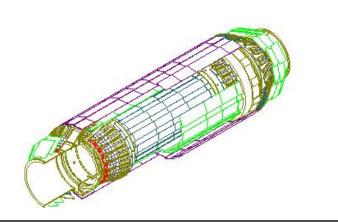
NA11 Detector:

- 1200 diode strips on 2436mm² active area
- Resolution of 4.5 µm
- 250-500 µm thick bulk material

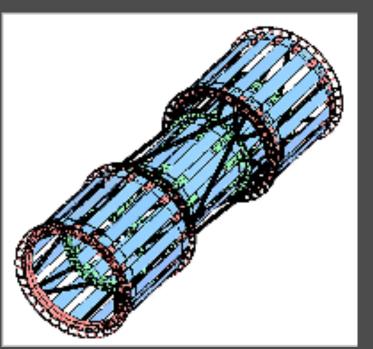

NA11 @ CERN : fixed target experiment ~ 1980


Reconstruction of the production and decay of a $D^- \rightarrow K^+ \pi^- \pi^-$

John Ellis visioned at a conference in Lake Tahoe, California in 1983, "To proceed with High Energy Particle Physics, one has to tag the flavour of the quarks!"


CDF @ Fermilab : Collider beam Experiment Top Quark Discovery

Evolution of Si Detectors in EHEP

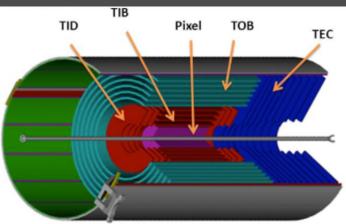


Large Silicon Sytems in EHEP

DELPHI (1996) ~ 1.8m² silicon area

175 000 readout channels


CDF SVX IIa (2001-)


- ~ 11 m² silicon area
- $\sim 750\ 000\ readout\ channels$

Large Silicon Sytems in EHEP

CMS Si Tracker (2007)

- ~12,000 modules
- ~ 206 m² silicon area
- ~ 25,000 silicon wafers
- ~ 10M readout channels

Large Silicon Sytems in EHEP

Highlight

cedirect.com

ect your interest

es and Astronomy ess in Particle and Nuclear Physics

 $(\mathbf{\hat{0}})$

Y

¥

se top 25 archive

er 2009 - September 2010 Academic Year 👘

my alerts

n up now! for the e-mail alerts

Top 25 Hottest Articles

Physics and Astronomy > Progress in Particle and Nuclear Physics October 2009 - September 2010 Academic Year

💦 RSS 🔳 Blog This! 📳 Print 🛛 <u>Show condensed</u>

 Toward ab initio density functional theory for nuclei • Review article Progress in Particle and Nuclear Physics, Volume 64, Issue 1, January 2010, Pages 120-16

Drut, J.E.; Furnstahl, R.J.; Platter, L.

∋ Cited by SciVerse Scopus (34)

 The neutron. Its properties and basic interactions - Review article Progress in Particle and Nuclear Physics, Volume 60, Issue 1, January 2008, Pages 29587 Abele, H.

Some Basic Facts

- By far the most important semiconductor for detector development is silicon
- The discovery of silicon (L. silex: silicis, flint) silicium in French is generally credited to Berzelius 1824
- Deville in 1854 first prepared crystalline silicon, the second allotropic form of the element
- Silicon is present in the sun and stars
 - principal component of a class of meteorites known as aerolites. It is also a component of tektites, a natural glass of uncertain origin.
- Silicon makes up 25.7% of the earth's crust by weight
 - is the second most abundant element, being exceeded only by <u>oxygen</u>.
- Silicon is not found free in nature, but occurs chiefly as the oxide and as silicates.
 - Sand, quartz, rock crystal, amethyst, agate, flint, jasper, and opal are some of the forms in which the oxide appears. Granite, hornblende, asbestos, feldspar, clay, mica, etc. are but a few of the numerous silicate minerals.

Ashutosh Bhardwaj

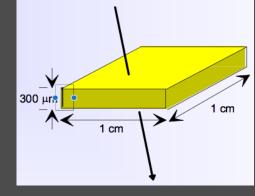
ADNHEAP 2017

Why Silicon

Silicon has properties which make it especially desirable as a detector material

- Small band gap Eg = 1.12 eV ⇒ E(e-h pair) = 3.6 eV (≈ 30 eV for gas detectors) (good signal)
- High specific density 2.33 g/cm³ ; dE/dx (M.I.P.) \approx 390 eV/µm \approx 108 e-h/µm (average)
- High carrier mobility μ_e =1450 cm²/Vs, μ_h = 450 cm²/Vs \Rightarrow fast charge collection (<10 ns)
- Very pure < 1ppm impurities and < 0.1ppb electrical active impurities, long mean free path (good charge collection efficiency)
- Iow dark current: Can be operated in air and at room temperature
- Iow Z (low multiple scattering)
- Rigidity of silicon allows thin self supporting structures
- Very well developed technology: microscopic structuring by industrial lithography

S/N ratio in intrinsic Silicon


Signal of a mip in such a detector:

 $\frac{dE/dx \cdot d}{I_0} = \frac{3.87 \cdot 10^6 \,\text{eV/cm} \cdot 0.03 \,\text{cm}}{3.62 \,\text{eV}} \approx 3.2 \cdot 10^4 \,\text{e}^-\text{h}^+\text{-pairs}$

Intrinsic charge carrier (T = 300 K): $n_i dA = 1.45 \cdot 10^{10} cm^{-3} \cdot 0.03 cm \cdot 1 cm^2$ $\approx 4.35 \cdot 10^8 e^{-h^+}$ pairs Number of thermal created e-h+-pairs are four orders of magnitude larger than signal!!!

 \Rightarrow Most detectors make use of reverse biased p-n junctions

Silicon Detector (Reverse Bias p-n junction)

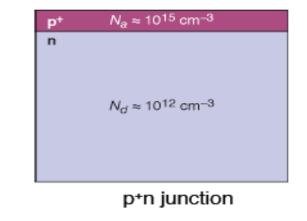
Make the p-n junction at the surface of a silicon wafer with the bulk being n-type
 Reverse Bias to extend the depletion region throughout the n bulk

Width of the depletion zone

Effective doping concentration in typical silicon detector with p+-n junction

- $N_a = 10^{15} \text{ cm}^{-3} \text{ in p+ region}$
- $N_d = 10^{12} \text{ cm}^{-3} \text{ in n bulk}.$

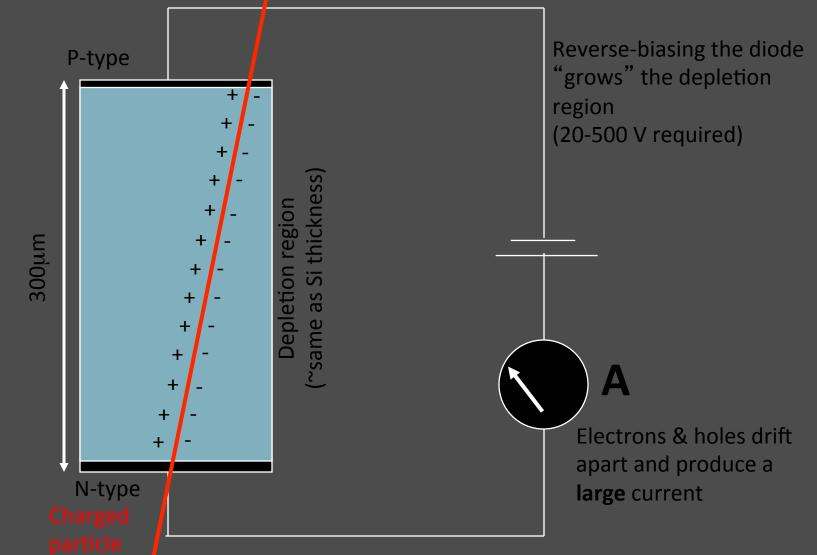
Without external voltage:


Applying a reverse bias voltage of 100 V:

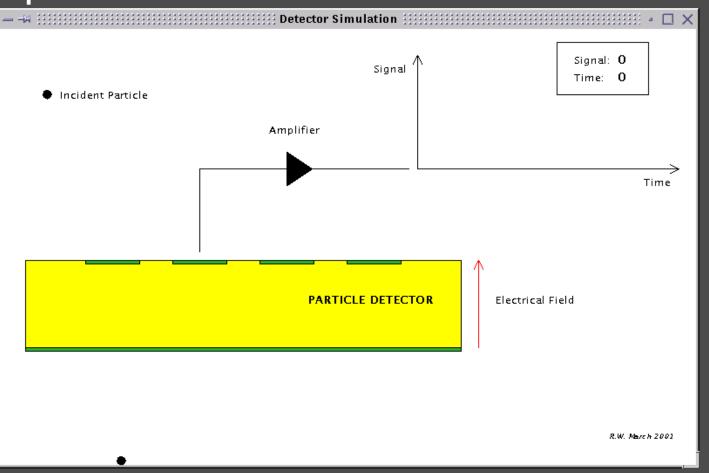
$$W_p = 0.4 \ \mu m$$

 $W_n = 363 \ \mu m$

Width of depletion zone in n bulk:


$$\boldsymbol{W} \approx \sqrt{2\varepsilon_0\varepsilon_r \mu \rho |\boldsymbol{V}|}$$

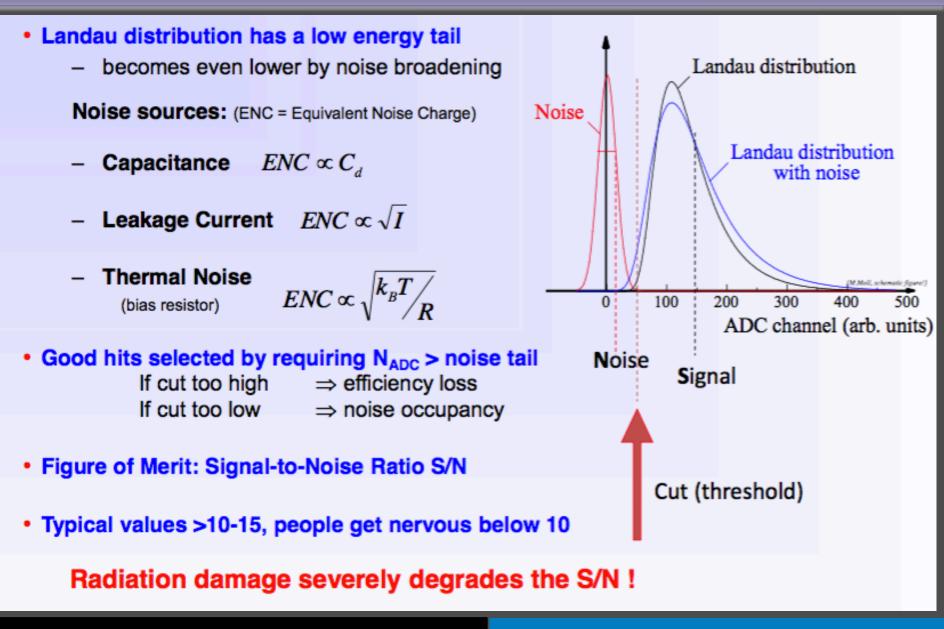
with
$$\rho = \frac{1}{e \mu N_{eff}}$$



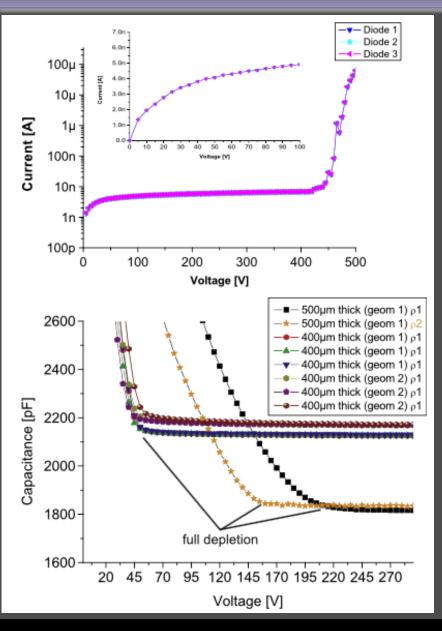
- V ... External voltage
 - ... specific resistivity
- μ ... mobility of majority charge carriers N_{eff} ... effective doping concentration

Silicon Sensors (2)

Principle cont..


Resolution σ depends on the pitch p (distance from strip to strip)

- e.g. detection of charge in binary way (threshold discrimination) & using center of strip as measured coordinate results in $\sigma = \frac{p}{r}$
- typical pitch values are 20 μ m– 150 μ m \Rightarrow 50 μ m pitch results in 14.4 μ m resolution

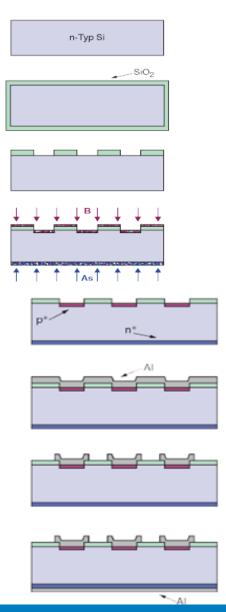

Ashutosh Bhardwaj

ADNHEAP 2017

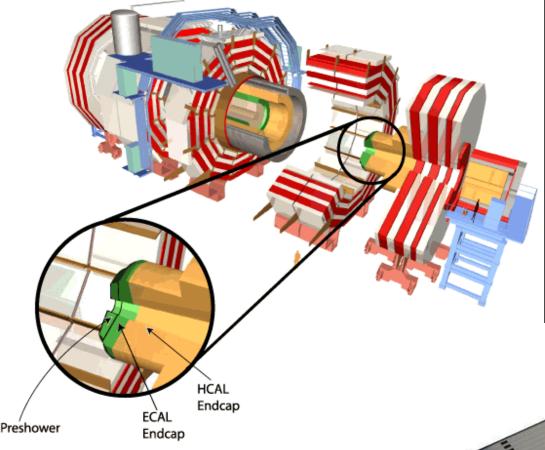
Signal to Noise Ratio

I-V & C-V Characterisitics

$$j_{gen} = \frac{1}{2} q \frac{n_i}{\tau_0} W \qquad j_{gen} \propto T^{3/2} \exp\left(\frac{1}{2kT}\right)$$
$$j_{gen} \times 2 \text{ for } \Delta T = 7K$$

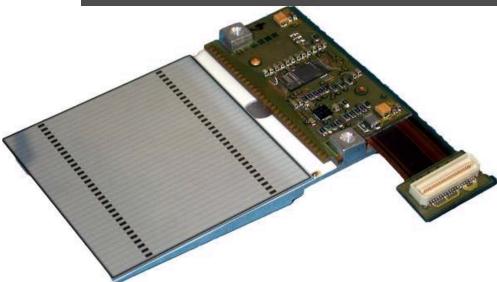

$$C_{bulk} = \begin{cases} A_{\sqrt{\frac{\epsilon_{Si}}{2\varrho\mu V_{bias}}}}, & V_{bias} \le V_{FD} \\ A_{\frac{\epsilon_{Si}}{D_{depletion}}} = const., & V_{bias} > V_{FD}. \end{cases}$$

Silicon Detector Fabrication


Planar process

- 1. Starting Point: single-crystal n-doped wafer (N_D \approx 1–5 \cdot 10¹² cm⁻³)
- Surface passivation by SiO₂-layer (approx. 200 nm thick). E.g. growing by (dry) thermal oxidation at 1030 °C.
- 3. Window opening using photolithography technique with etching, e.g. for strips
- 4. Doping using either
 - Thermal diffusion (furnace)
 - Ion implantation
 - p⁺-strip: Boron, 15 keV, $N_A \approx 5 \cdot 10^{16} \text{ cm}^{-2}$
 - Ohmic backplane: Arsenic, 30 keV, $N_D \approx 5 \cdot 10^{15} \ cm^{-2}$
- After ion implantation: Curing of damage via thermal annealing at approx. 600°C, (activation of dopant atoms by incorporation into silicon lattice)
- 6. Metallization of front side: sputtering or CVD
- Removing of excess metal by photolithography: etching of noncovered areas
- Full-area metallization of backplane with annealing at approx. 450°C for better adherence between metal and silicon

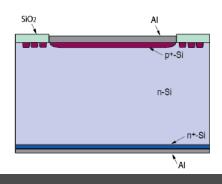
Last step: wafer dicing (cutting)

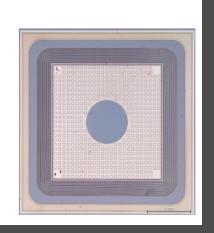

CMS Preshower Detector (DU Contribution)

•No constraints on the support material

- Si sensors and front-end hybrids glued to a ceramics support
 Everything supported by an Al tile
- Cooling through the tile
 Si sensor: 63×63 mm²
 32 strips, 1.9 mm pitch

•4300 modules, 18 m² of silicon

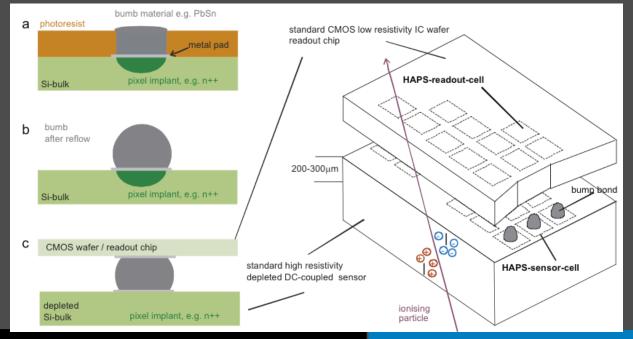



Different Configurations

Pad Detector

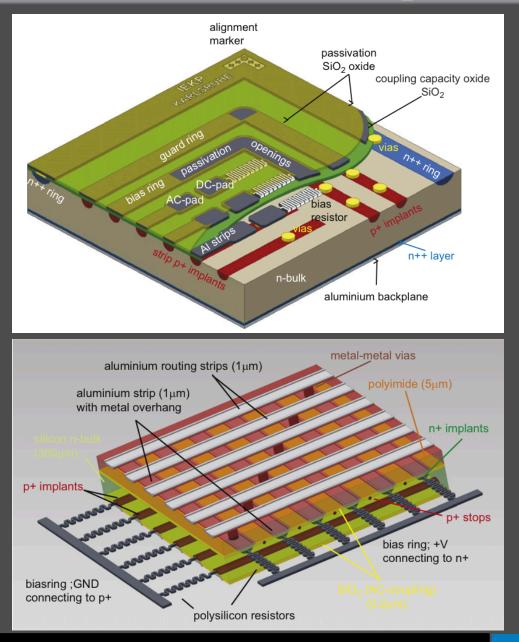
The most simple detector is a large surface diode with guard ring(s).


- · no position resolution
- · Good for basic tests (IV, CV)



Pixel Detectors Advantages

- · Double sided strip sensors produce ghost hits
 - Problematic for high occupancies
- · Pixel detectors produce unambiguous hits


- Small pixel area → low detector capacitance (≈1 fF/Pixel)
 → large signal-to-noise ratio (e.g. 150:1).
- Small pixel volume → low leakage current (≈1 pA/Pixel)

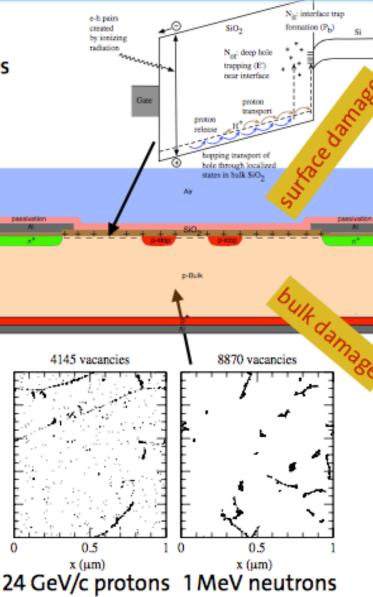
Ashutosh Bhardwaj

ADNHEAP 2017

Strip Detectors

Single sided Strip Detectors For tracking. Provides 1-D information.

Double sided Strip Detectors For tracking. Provides 2-D information.


Radiation Damage

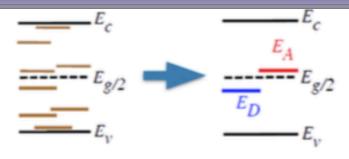
Surface damage (Ionizing Energy Loss):

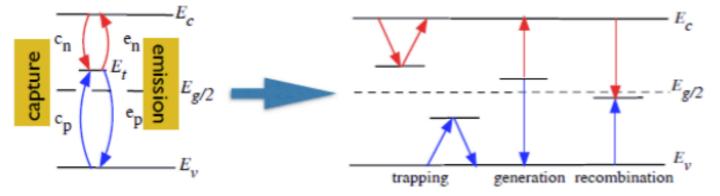
- Build up of oxide charges, border and interface traps
 - Increase of surface current
 - Change of electrical field near to the Si-SiO₂ interface
 - ➡ Trapping near to the Si-SiO₂ interface
- C-V/I-V on MOS capacitors, MOSFET and gate controlled diodes

Bulk damage (NIEL):

- Point and cluster defects in the silicon lattice
 - ➡ Increase of leakage current
 - Change of the space charge in the depletion region, increase of full depletion voltage
 - ➡ Trapping of drifting charge
- I-V, C-V and CCE on pad diodes

Ashutosh Bhardwaj

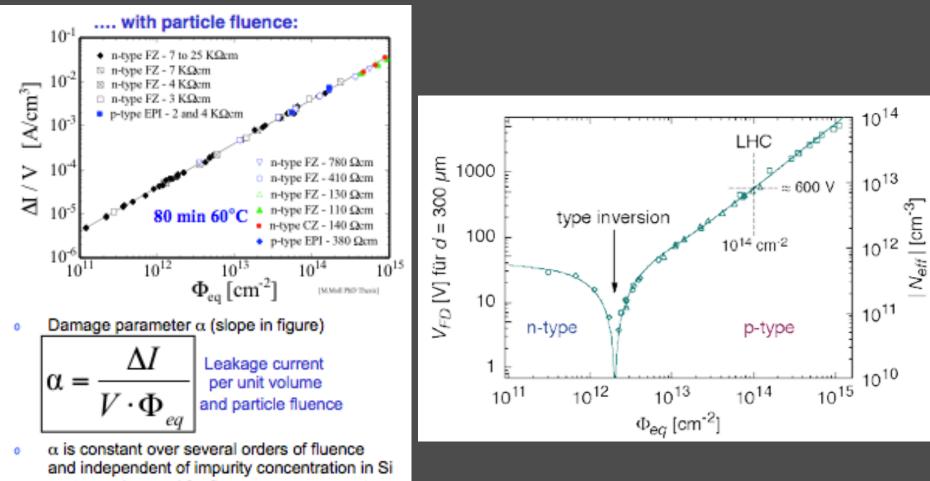

ADNHEAP 2017


Radiation Damage: BulkDamage

- Damage models
 - fill the simulators with identified levels (convergance problems in simulators)
 - use effective trap levels (2 or 3, not many more)

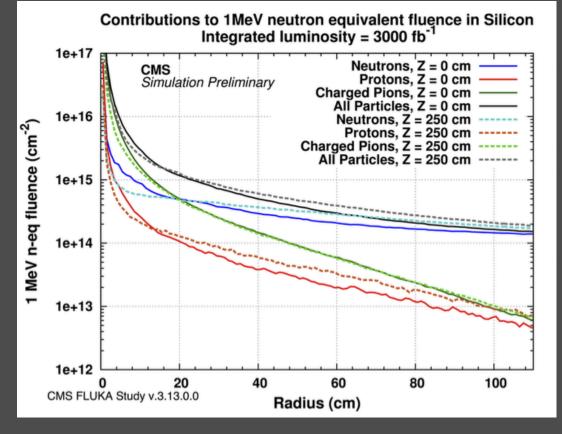
to model the large number of traps levels

Assume the traps obey SRH statistics:



- Any trap level included in simulation requires 4 parameters:
 - defect concentration function of fluence
 - cross sections for hole and electron capture
 - energy level

Parameters should be precisely known or amount of traps should be small.


Macroscopic Effects of Bulk Damage

can be used for fluence measurement

HL-LHC Environment

<u>LHC to undergo upgrade in year 2022 → High Luminosity - LHC</u>

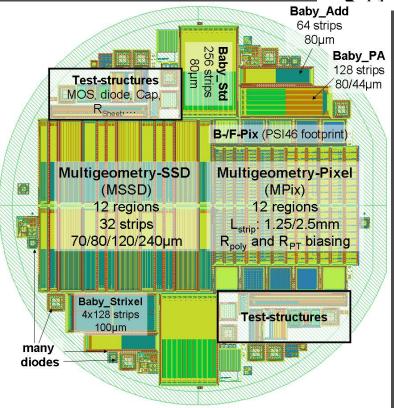
The current tracker can not survive in HL-LHC ! 🛞

A 'NEW TRACKER' is required !!

<u>New Tracker</u>: Radiation hard material, granular \rightarrow Material growth techniques, substrate, implant, configuration, thickness, geometry are crucial parameters

* H. Behnanian. 13th IPRD. 2014 JINST 9 C04033

Ashutosh Bhardwaj


ADNHEAP 2017

HPK Campaign

Optimization in multi-parameter space (164 wafers):

- →Si bulk material, thickness, polarity, layoutparameters like strip pitch, etc.
- → Have one company implement identical structures on different silicon wafers:
- → n-type and p-type(with p-stop and p-spray strip isolation)
- → Characterizations are done before and after irradiations (both with 23MeV protons @ KIT and reactor neutrons @ JSI, Ljubljana)

DU's Contribution in Outer Tracker

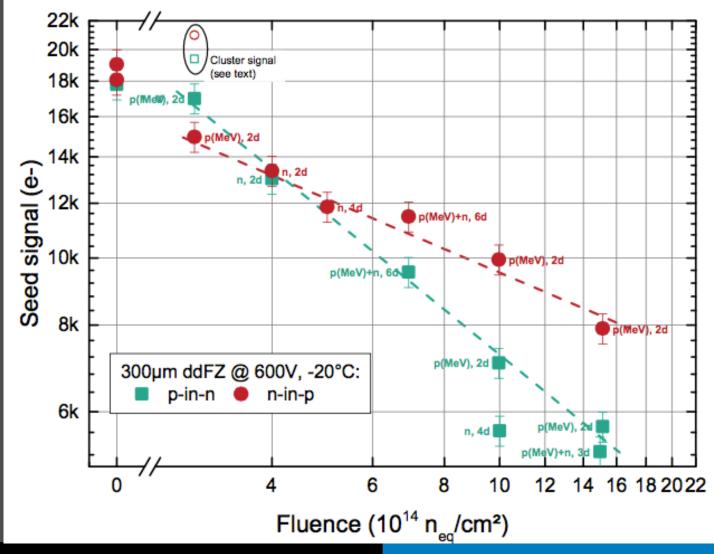
CMS Phase II Tracker R&D for Si strip sensors is done under HPK Campaign

- MSSD measurement results are complemented with TCAD device simulation
 - Excellent agreement of C_{int} with unirradiated sensors
 - Comparison with both n-type and p-type substrates
 - R&D for p-stop/p-spray design is ongoing
- Trap model developed and further R&D for Radiation Damage simulation is in progress
 - effects on leakage current, full depletion voltage, Charge collection efficiency and double peak electric field effect are in agreement
- 2-D simulation for pixel sensors is performed

CMS DN-14-016

2014/08/08 Head Id: Archive Id: 255221:255288M Archive Date:

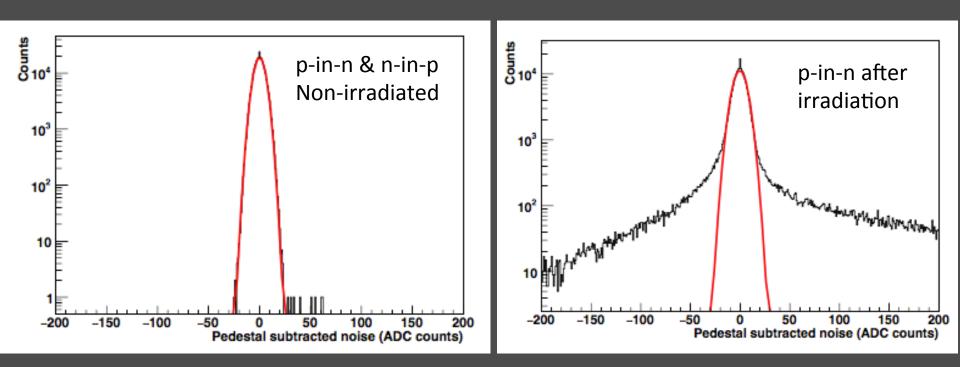
Simulation of Silicon Devices for the CMS Phase II Tracker Upgrade


Abstract

During the planned high luminosity phase of the LHC (HL-LHC, year-2023) the tracking system of CMS will face a more intense radiation environment than the present system was designed for. This requires the design of higher granular as well as radia-

This box is only visible in draft mode. Please make sure the values below make sense.

PDFAuthor:	Ashutosh Bhardwaj, Ranjit Dalal, Robert Eber, Thomas Eichhorn, Kavita
	Lalwani, Alberto Messineo, Timo Peltola, Martin Printz, Kirti Ranjan
PDFTitle:	Simulation of Silicon Devices for the CMS Phase II Tracker Upgrade
PDFSubject:	CMS
PDFKeywords:	CMS, physics, hardware, tracker, upgrade, silicon, sensor, radiation dam-
-	age, defect-model, defects


Charge Collection Efficiency: P-type OR N-type substrate

Ashutosh Bhardwaj

ADNHEAP 2017

Noise Distribution: Gaussian Fitted

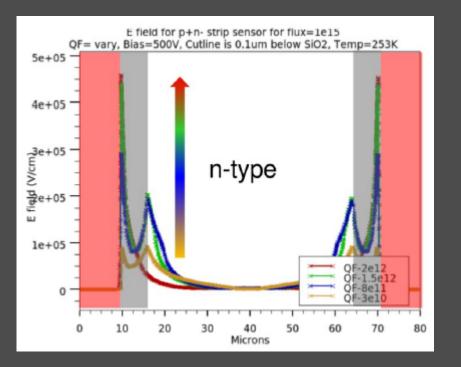
Recent models for p-bulk - New Delhi model

Ranjeet Dalal et al., PoS(Vertex2014)030

Radiation Damage Model developed by DU: 2 Bulk + 1 N_{ox} + 2 Interface Trap Model

* R. Dalal et al., PoS (Vertex2014).

							Nox (Fixed Positive Oxide Charge Den		
D11_	Trap	Energy Level	Density (cm ⁻³)	$\sigma_e (cm^{-2})$	$\sigma_{\rm h} ({\rm cm}^{-2})$	<u>1 ox</u> -			
<u>Bulk</u> <u>Traps</u>	Acceptor	E _C - 0.51 eV	4 X Φ	2.0 x 10 ⁻¹⁴	3.8 x 10 ⁻¹⁴		Fluence, Φ (n _{eq} .cm ⁻²)	N _{ox} density(cm ⁻²)	
	Donor	$E_V + 0.48 \text{ eV}$	3 X Φ	2.0 x 10 ⁻¹⁵	2.0 x 10 ⁻¹⁵		Non-Irradiated	$5.0 \ge 10^{10} - 5.0 \ge 10^{11}$	
							1.0 X 10 ¹⁴	1.0 x10 ¹¹ - 8.0 x 10 ¹¹	
<u>Interface</u> <u>Traps</u>	N _{it}	Energy Level	Density (cm ⁻²)	$\sigma_e (cm^{-2})$	$\sigma_{\rm h}({\rm cm}^{-2})$				
	Acceptor	E _C - 0.60 eV	0.6 X N _{ox}	0.1 x 10 ⁻¹⁴	0.1 x 10 ⁻¹⁴		5.0 X 10 ¹⁴	5.0 x 10 ¹¹ - 1.2 x10 ¹²	
	Acceptor	E _C - 0.39 eV	0.4 X N _{ox}	0.1 x 10 ⁻¹⁴	0.1 x 10 ⁻¹⁴		> 1.0 X 10 ¹⁵	8.0 x 10 ¹¹ - 2.0 x 10 ¹²	

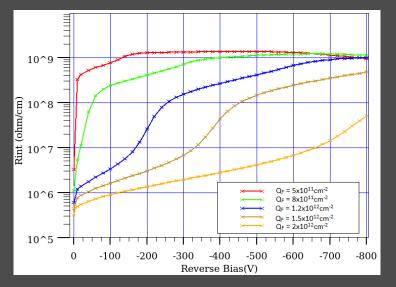

Developed on Silvaco

Model based on the original work of: V.Eremin, E.Verbitskaya, Z.Li, NIMA 476 (2002) 556-564

Ashutosh Bhardwaj

ADNHEAP 2017

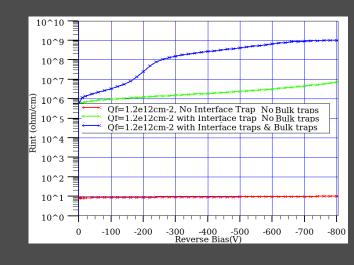
Electric Field: P-type OR N-type substrate

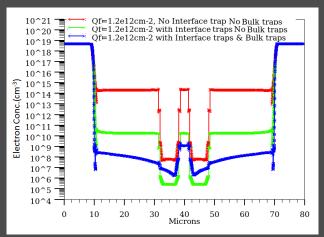

E field for P-type and N-type strip sensor for flux=1e15cm-2 QF=1.2e12cm-2, Bias=500V, Cutline is 0.1um below SiO2 4e+05 p-type 3e+05 n-type 2e+05 1e+05 P-type strip senso N-type strip senso 0 0 10 20 30 40 50 60 70 80 Microns

Increasing fluence \rightarrow More radiation damage \rightarrow Higher bulk & surface damage \rightarrow Q_F grows \rightarrow E.Field @ implant edges shoots! Reverse effect of Q_F on E.Field for ptype substrates. Increase in Q_F , decreases E.Field!

* R. Ranjeet et al., Simulations for Hadron Irradiated n+p- Si Strip Sensors Incorporating Bulk and Surface Damage, presented at 23rd RD50 Workshop, CERN, Switzerland (2013).

Inter-strip Resistance

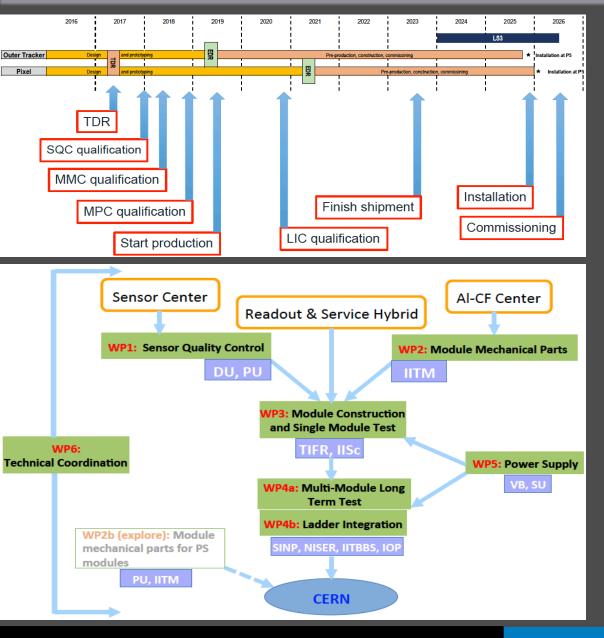

 R_{int} is a surface property. → It was thought that it is affected by surface damage (Q_F) only.



Increase in Q_F attracts more e⁻s towards the n⁺ side of the detector. $\rightarrow R_{int}$ decreases.

Not consistent with measurements!

Both surface $(Q_F + N_{it})$ & bulk damage traps play a role in deciding R_{int} !

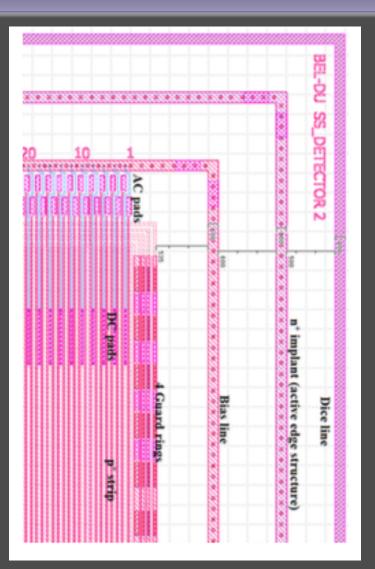

 $N_{it} = 2$ acceptor type traps

Bulk traps = Acceptor & Donor traps, but near the n⁺ implant, acceptor traps are more ionized

→ These two COMPENSATE the effect of accumulation of e^{-s} by Q_F (positive fixed oxide charge)

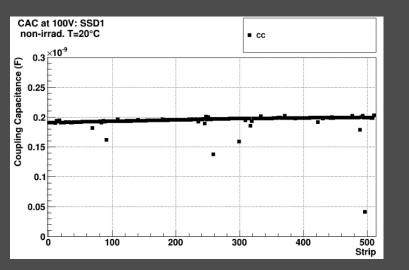
*R. Dalal., <u>G. Jain</u>, et al Simulation of Irradiated Si Detectors. POS (Vertex 2014).

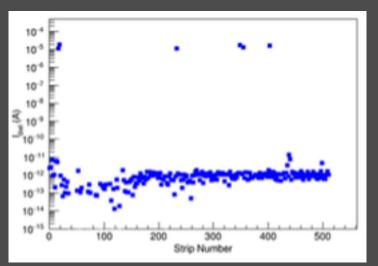
India in CMS Outer Tracker- Current Status

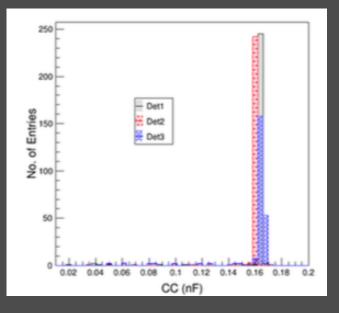


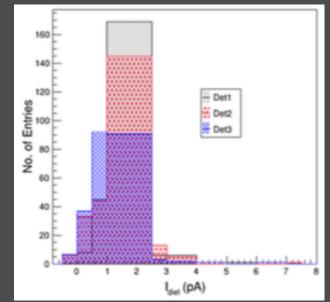
Acronyms used above: SQC (Sensor Qualification Center) MMC (Module Mechanics Center) MPC (Module Production Center) LIC (Ladder Integration Center) **TDR** (Technical Design Report) EDR (Engineering Design Report)

Detector Development in India

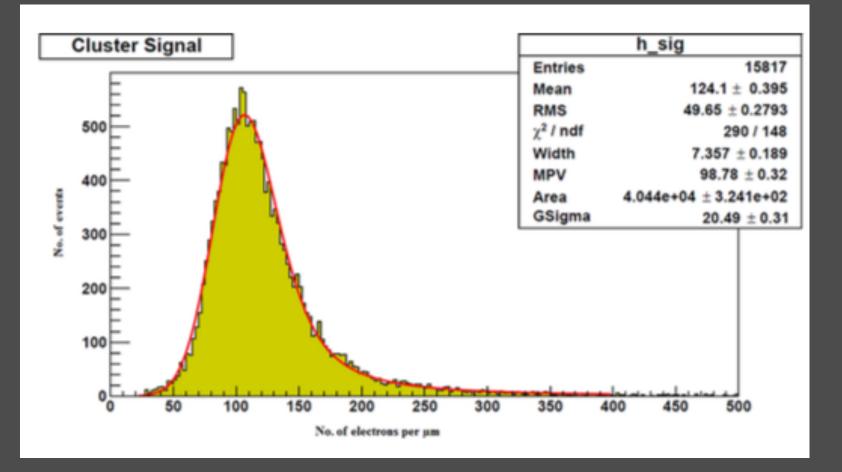

Detector Dimensions: 3.4 cm x 6.0 cm Strip width: 30 μ m, Strip pitch: 55 μ m # of Strips in each detector: 512

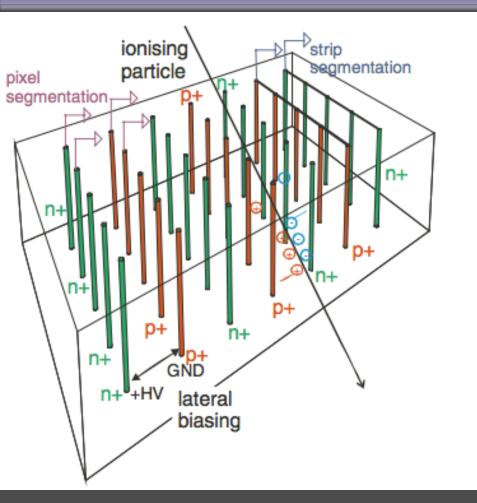

Measurement Results

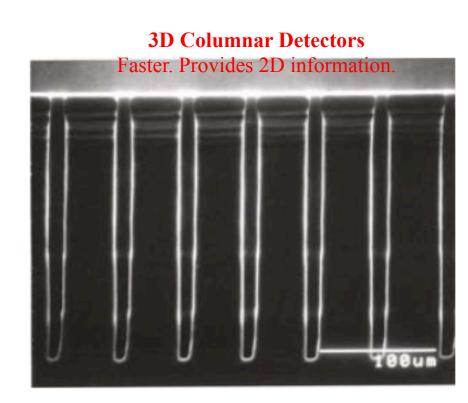



Coupling Capacitance (specs: >110pF)

Dielectric Current (specs: < 1nA @ 10V)

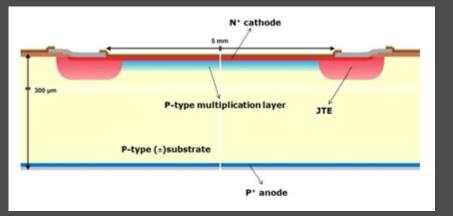



Ashutosh Bhardwaj


Karlsruhe Institute of Technology

Charge Collection

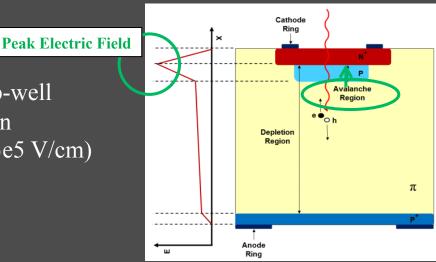

Ongoing R&D: Novel Detectors


- Deep holes are etched into the silicon finally serving as electrode junctions
- The depletion zone is in the horizontal direction instead of the standard vertical one
- The electrons and holes travel a much shorter way & are therefore less sensitive to trapping.

CMOS Detectors (Monolithic Active Pixels)

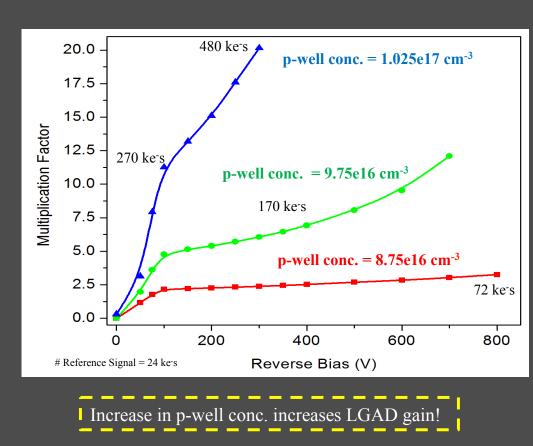
- Electrons created inside the shallow depletion zones are fully collected while electrons from the EPI layer randomly walk towards the N-well and with an excellent lifetime behaviour, only some of them will be trapped.
- Nevertheless, CMOS devices have an excellent signal-to-noise ratio due to their very small capacitances and low currents, therefore the low noise compensates for the low signal.

Low Gain Avalanche Detector

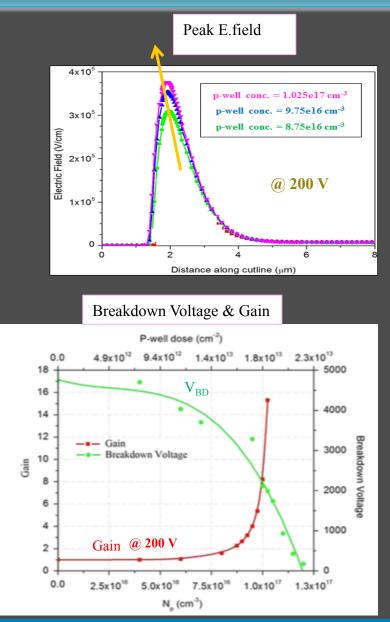


*Marta Baselga, 8th Trento workshop, 2013.

LGAD – traditional PIN detector, but with a deeper p-type multiplication layer (also called p-well) just below the n⁺ implant.


Purpose of the p+ layer

- PN junction formed between n⁺ implant & p-well
- A strong electric field builds in a local region
- Avalanche starts at critical electric field (> 3e5 V/cm)
- Local & controlled 'charge multiplication'
- Internal gain increases signal


^{*}Giulio Pellegrini, 23rd RD50 workshop.

Simulated Result: Non-Irradiated

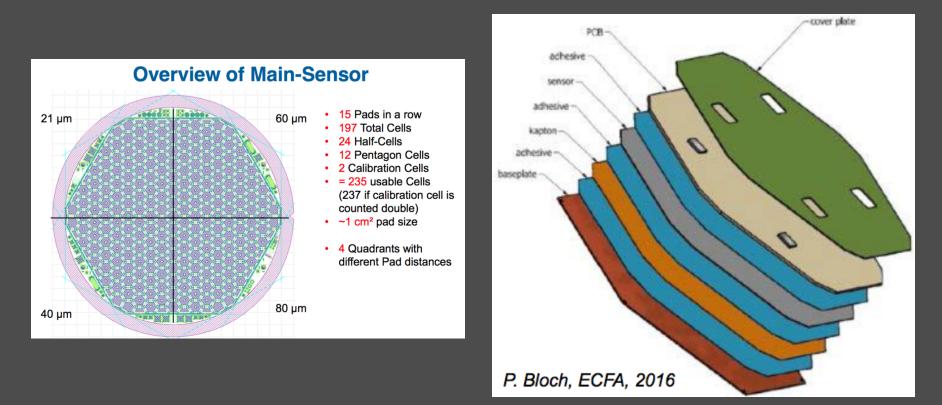
Because: increase in p-well conc. builds a stronger p-well-n⁺ junction. Hence a higher peak electric field generates at the junction. This provides larger avalanche and thereby larger gain.

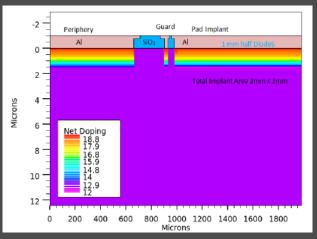
* R. Dalal, <u>G. Jain</u>, A. Bhardwaj, K. Ranjan. TCAD simulation of Low Gain Avalanche Detectors. NIM A. Manuscript accepted.

SUMMARY & Future Outlook

- Silicon sensors are widely used in HEP experiments
- Although used since more than 35 years (NA11, 1980) continuous developments enable usage in unprecedented harsh environments
- Silicon detectors since early 1990s, very good position resolution, good tracking detectors
- HL-LHC radiation scenario is challenging: Sensor developments for HL-LHC detector upgrades (~2024) are in the transition from R&D to prototyping
- TCAD simulations is a useful tool to understand device behaviour in irradiated environments → tune models and simulation parameters
- DU participated actively in tracker HPK campaign
- DU Jointly with other Indian Institutes in CMS, is planning to participate in the Phase-II Tracker Upgrade
- DU is involved in development of AC coupled Si sensors in India
- New detector technologies are under exploration
- Silicon sensor development will stay exciting! Stay tuned

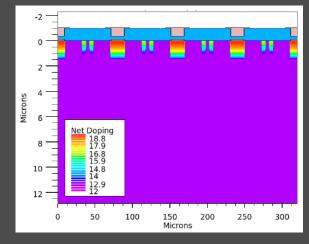
Acknowledments & Litreture


- Some material taken from the following presentations & sources
 - Michael Moll, CERN, Charged Particle Tracking in High Energy Physics (ESI 2013)
 - Rainer Wallny, UCLA, Silicon Detector Workshop at UCSB May 11th, 2006
 - M. Krammer, Silicon Detectors, XI ICFA School on Instrumentation
 - Frank Hartman, Silicon Detectors
 - Alexander Dierlamm, Silicon Sensors for HEP Experiments, DAE-BRNS-HEP Symposium 2016
 - Endcap Calorimeter: Status Report, CMS Week 2016, TIFR, Mumbai
 - o J. Zhang, PhD, DESY, 2013
- Literature: Further Reading
 - Frank Hartman, Evolution of Silicon Sensor technology in particle physics, Springer
 - o G.Lutz, Semiconductor Radiation Detectors, Springer
 - H.Spieler, Semiconductor Detector Systems, Oxford University Press
 - o G. F. Knoll, Radiation Detection and Measurement, John Wiley and Sons
 - S. M.Sze, Physics of Semiconductor Devices, Wiley-Interscience

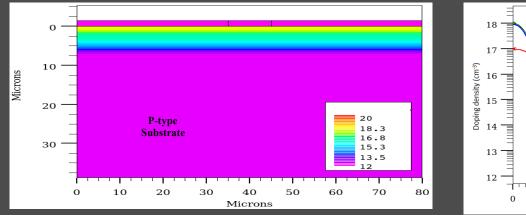


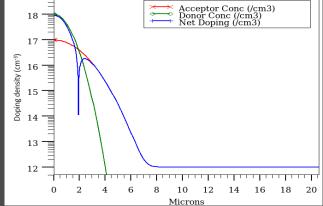
CMS High Granularity Calorimeter

- 600m² (!) of silicon, 6M channels
- hexagonal pad detectors on 8" wafers (0.5/1cm² individual pad size)
- tiny space for integration
- F<1x10¹⁶neq/cm² and MIP sensitive ! (large capacitance ~ 40pF!)



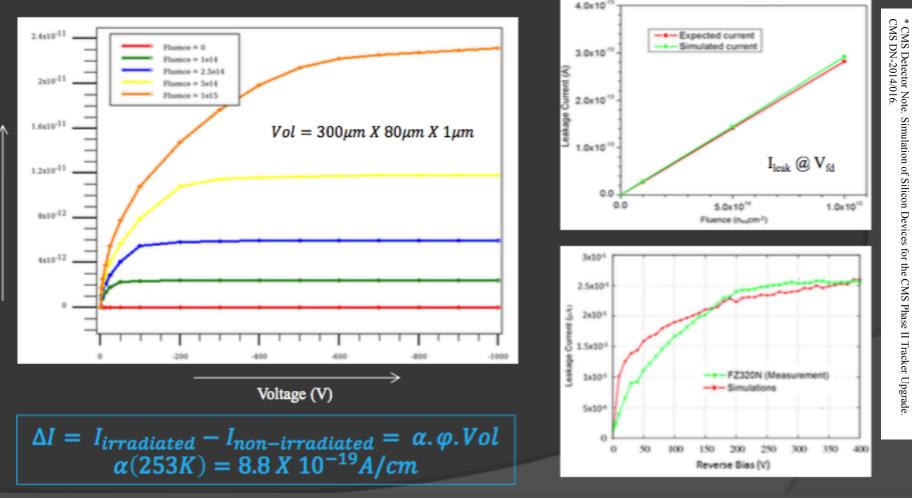
Structures in SILVACO




(1) Pad Diode

(2) Strip Detector

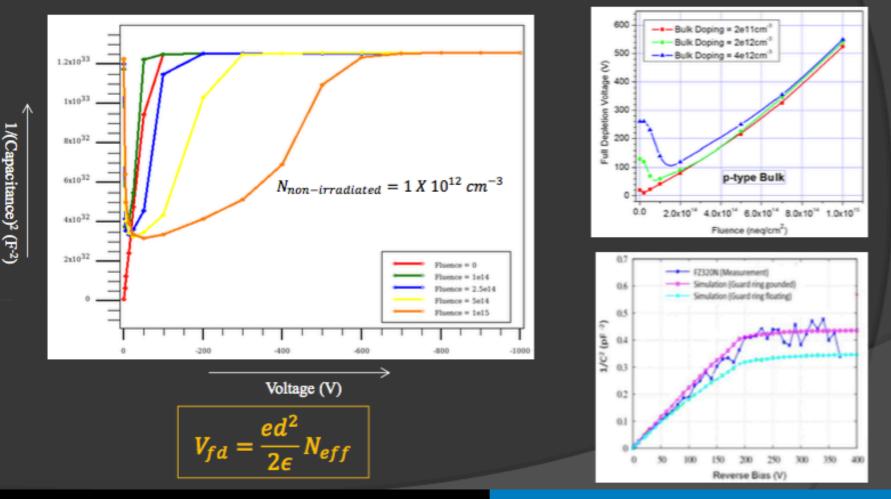
(3) Low Gain Avalanche Detector



Ashutosh Bhardwaj

Pad Diode - IV

Detector is reverse dc biased. \rightarrow Leakage current is measured (in dark). Importance: Leakage Current value is a measure of NOISE at a particular voltage. Critical at high fluence because SNR goes down.

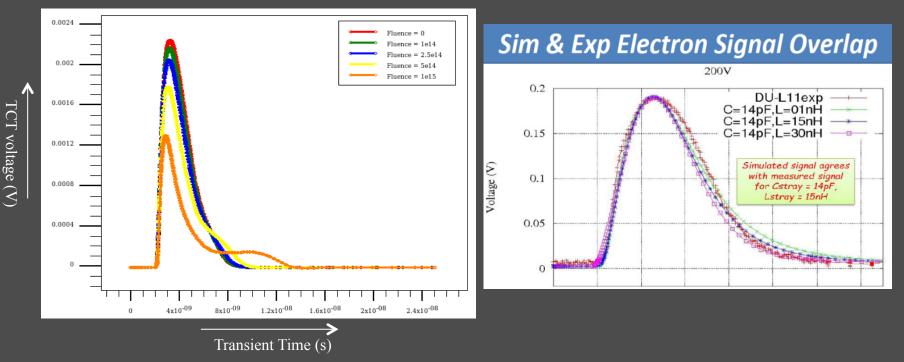

Ashutosh Bhardwaj

Current (A)

Pad Diode - C⁻²V

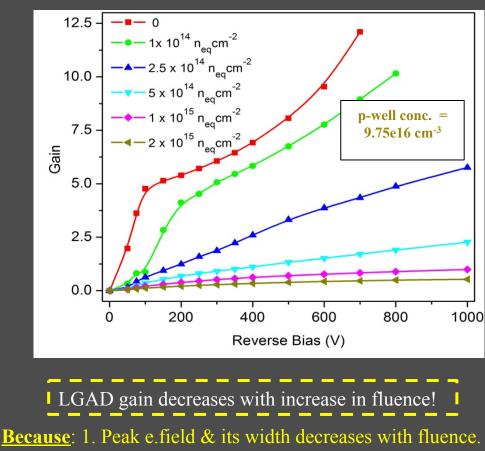
Detector is reverse dc biased & a small amplitude ac signal is provided at a frequency of 1kHz.
 → Impedance is measured.

Importance: Detector operation voltage is chosen 1.5 times of the full depletion voltage.



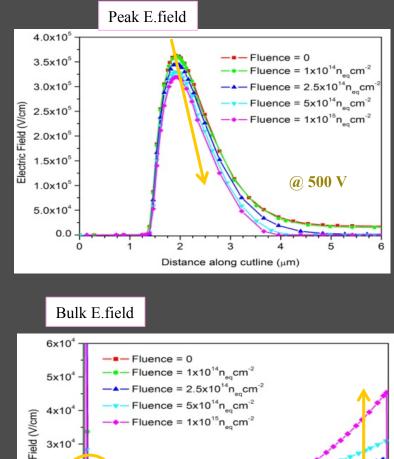
Ashutosh Bhardwaj

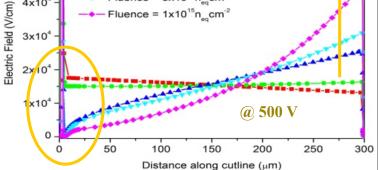
Pad Diode - Transient Current Technique


Detector is reverse dc biased & an Infrared laser is shone from top or bottom. \rightarrow Transient voltage is measured as a function of time.

Importance: Detector charge collection profile with voltage & fluence.

CC=area under IR laser TCT curve

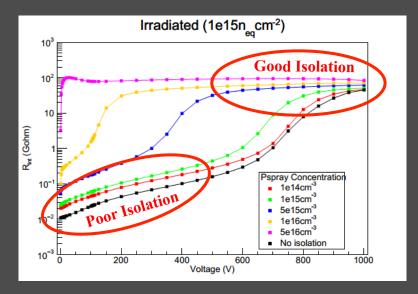

Simulated Result: Irradiated

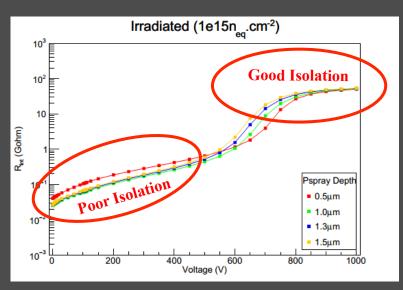


E.field grows at backside of detector.

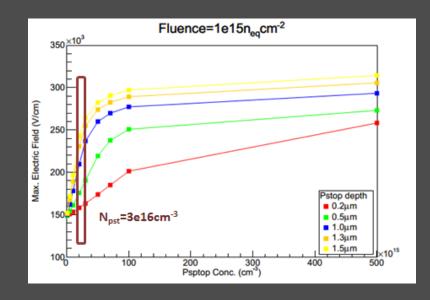
2. E.field just below the p-well region drops to very low value. Inefficient charge collection.

* R. Dalal, <u>G. Jain</u>, A. Bhardwaj, K. Ranjan. TCAD simulation of Low Gain Avalanche Detectors. NIM A. Manuscript accepted.




Radiation induced <u>bulk defects</u> relevant for detector operation

Electrical properties


Defects	σ _{n.p} [cm ²]	E _A [eV]	Assignment/References	Impact on electrical characteristics at RT
E(30K)	σ _n =2.3 x 10 ⁻¹⁴	E _C - 0.1	Electron trap with a donor level in the upper half of the Si bandgap /[Nucl. Instr. and Meth. in Phys. Res. A 611 (2009) 52; J. Appl.Phys. 117 (2015) 164503]	On the N _{eff} by introducing positive space charge - It makes the difference between proton and neutron irradiations - More generated in O rich material
BD _A ^{0/++}	$\sigma_n = 2.3 \times 10^{-14}$	E _C - 0.225	Bistable Thermal double donor TDD2 (two configurations A and/or B) - Electron trap with a donor	On the Neff by introducing
BD _B +/++	$\sigma_n = 2.7 \text{ x } 10^{-12}$	E _C - 0.15	level in the upper half of the Si bandgap/ [Appl. Phys. Lett. 50 (21) (1987) 1500; Nucl. Instr. and Meth. in Phys. Res. A 514 (2003) 18; Nucl. Instr. and Meth. in Phys. Res. A 556 (2006) 197; Nucl.	 positive space charge Strongly generated in O rich
			Instr. and Meth. in Phys. Res. A 583 (2007) 58]	material
I _p +/0	$\sigma_p = (0.5-9) \times 10^{-15}$	E _v + 0.23	Donor level of V ₂ O or of a still unkown C related defect / [Appl. Phys. Lett. 81 (2002) 165; Appl.	On the Neff by introducing
	σ ₀ =1.7 x10 ⁻¹⁵	E _c - 0.545	Phys. Lett. 83, 3216 (2003); Nucl. Instr. and Meth. in Phys. Res. A 611 (2009) 52] Acceptor level of V ₂ O or of a still unkown C related defect/[Nucl. Instr. and Meth. in Phys. Res. A	negative space charge and on LC
I _p 0/-	$\sigma_0 = 9 \times 10^{-14}$	L _C - 0.545	611 (2009) 52, Appl. Phys. Lett. 81 (2002) 165; J. Appl.Phys. 117 (2015) 164503]	- Strongly generated in O lean
P	·			material
E ₄	$\sigma_n = 1 \times 10^{-15}$	E _C -0.38	Trivacancy: Acceptor in the upper part of the gap associated with the double charged and single	On LC
E ₅	σ _n =7.8 x 10 ⁻¹⁵	E _C -0.46	charged states of V ₃ , respectively (V ₃ ^{=/-} and V ₃ ^{-/0}) / [J. Appl. Phys. 111 (2012) 023715.]	
H(116K)	σ _p =4 x 10 ⁻¹⁴	E _V + 0.33	Hole trap with an acceptor level in the lower part of the Si bandgap - Extended defect (cluster of	On the N _{eff} by introducing
			vacancies and/or interstitials) / [Appl. Phys. Lett. 92 (2008) 024101, Nucl. Instr. and Meth. in Phys. Res. A 611 (2009) 52-68; J. Appl.Phys. 117 (2015) 164503]]	negative space charge
H(140K)	σ _p =2.5 x 10 ⁻¹⁵	E _v + 0.36	Hole trap with an acceptor level in the lower part of the Si bandgap - Extended defects (clusters of	On the Neff by introducing
			vacancies and/or interstitials)/[Appl. Phys. Lett. 92 (2008) 024101, Nucl. Instr. and Meth. in Phys. Res. A 611 (2009) 52-68; J. Appl.Phys. 117 (2015) 164503]]	negative space charge
H(152K)	σ _p =2.3 x 10 ⁻¹⁴	E _v + 0.42	Hole trap with an acceptor level in the lower part of the Si bandgap - Extended defects (clusters of	On the N _{eff} by introducing
			vacancies and/or interstitials)/[Appl. Phys. Lett. 92 (2008) 024101, Nucl. Instr. and Meth. in Phys. Res. A 611 (2009) 52-68]; J. Appl.Phys. 117 (2015) 164503]	negative space charge
			(corr) to collect the set of the	

Inter-pixel Resistance & Max. E.Field

A higher concentration & a deeper pspray/pstop provides good isolation. But, this also leads to a rise in the electric field!

Therefore, an optimized concentration & depth of the isolation structure has to be chosen.

TCAD Simulations: Models & Numerical Methods

Equations for unknowns (n, p, ϕ) :

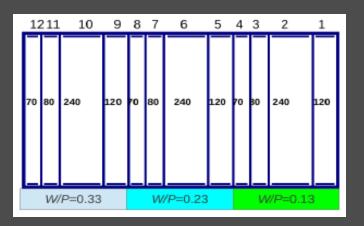
Poisson Equation $\nabla^2 \varphi = -\frac{\rho}{\varepsilon}$ $\rho = p - n + N_D^+ - N_A^-$

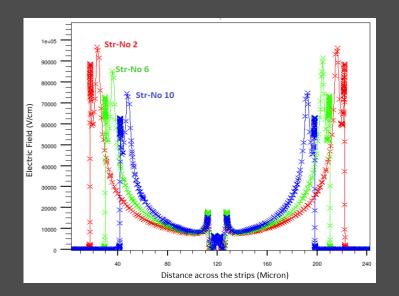
Current Density Equation $J_n = q \left(n\mu_n E + D_n \frac{\partial n}{\partial x} \right)$ $J_p = q \left(p\mu_p E - D_p \frac{\partial p}{\partial x} \right)$

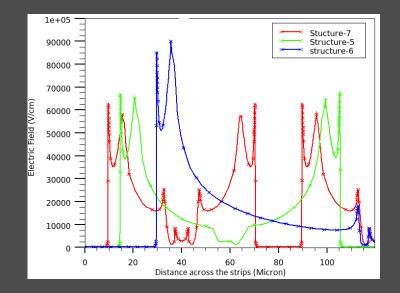
Continuity Equation $\frac{\partial n}{\partial t} = \frac{1}{q} \nabla . J_n - r_n + g_n$ $\frac{\partial p}{\partial t} = -\frac{1}{q} \nabla . J_p - r_p + g_p$ These equations use one of these specified models.

- These equations are solved using one of the methods.
- Extraction & Calculation of quantities

Physical Models:


- a) Mobility Concentration dependent, parallel field dependent
- b) Impact ionization Selberherr, Van Overstraten, Grant's, etc.
- c) Generation & Recombination Shockley Read Hall
- d) Oxide physics Fowler-Nordheim, Interface charge accumulation
- e) Statistics Boltzmann, Band Gap Narrowing
- f) Tunnelling Band-to-band, Trapassisted


Numerical Methods:


- a) Gummel
- b) Newton
- c) Block

Width & Pitch

HPK Campaign

As the strip pitch increases, the electric field at the implant edge rises.

As the strip width increases, the electric field at the implant edge decreases.

'Simulation & Modeling'

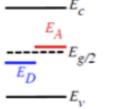
A 'simulation' is an 'imitation of reality' !!

- How does it work?
 - The physical structure to be simulated
 - The choice of physical models
 - The numerical methods to solve the physical equations
 - The bias conditions for the electrical characteristics

Modeling: Comparison between Simulations & Measurements!!

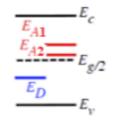
- Choice of models & model parameters
- Tweaking of process & design parameters
- Optimization (multi-dimensional phase space) \rightarrow Agreement of Macroscopic properties
- Fabrication of sensors with optimized design parameters

	Diamond	SiC (4H)	GaAs	Si	Ge
Atomic number Z	6	14/6	31/33	14	32
Bandgap E _g [eV]	5.5	3.3	1.42	1.12	0.66
E(e-h pair) [eV]	13	7.6-8.4	4.3	3.6	2.9
density [g/cm ³]	3.515	3.22	5.32	2.33	5.32
e-mobility $\mu_e [cm^2/Vs]$	1800	800	8500	1450	3900
h-mobility $\mu_h [cm^2/Vs]$	1200	115	400	450	1900



G. Kramberger, Radiation damage models, comparison and perfomance of TCAD simulation, Vertex 2016, Elba

Models of radiation damage in TCAD


EVL model

A single donor in bottom half of the bandgap and a single acceptor in the upper half of the bandgap

Perugia model

Three levels associated to donor CiOi, $1^{\rm st}$ acceptor to V_2 and $2^{\rm nd}$ acceptor to V_3

Model	E [eV]	g _{int} [cm ¹]	σ _{e[} [cm²]	σ _h [cm²]	Model	E [eV]	g _{int} [cm ¹]	$\sigma_{e[}$ [Cm ²]	
EVL	Ev+0.48	6	1e-15	1e-15	Perugia	Ev+0.36	0.9	2.5e-13	
Neutrons	Ec-0.525	3.7	1e-15	1e-15	p-type	Ec-0.42	1.6	2e-15	
						Ec-0.46	0.9	5e-15	
Delphi	Ev+0.48	4	2e-15	2.6e-15					
23 MeVp	Ec-0.51	3	2e-15	2e-15					
					Perugia	Ev+0.36	1.1	2e-18	
					n-type	Ec-0.42	13	2.5-15	
KIT (Eber)	Ev+0.48	5.598 (-3.949e14)	2e-15	2.6e-15		Ec-0.50	0.08	5e-15	
23 MeVp	Ec-0.525	1.198 (+6.5434e13)	2e-15	2e-15					
					Peniccard	Ev+0.36	0.9	3.23e-13	
HIP	Ev+0.48	5.598 (-3.949e14)	1e-14	1e-14		Ec-0.42	1.613	9.5-15	
23 MeVp	Ec-0.525	1.198 (+6.5434e13)	1e-14	1e-14		Ec-0.46	0.9	5e-15	
2 µm from surface only	Ec-0.40	14.417 (+3.168e16)	8e-15	2e-14					
,					Perugia new	Ev+0.36	0.9	3.23e-13	
Hamburg (new)	Ev+0.48	1.51-2.75	8.37e-15	2.54e-15	(<7e15 cm ⁻²)	Ec-0.42	1.6	1e-15	
2 ,	Ec-0.525	0.36-0.93	6.3e-15	8.37e-15		Ec-0.46	0.9	7e-15	

Ashutosh Bhardwaj

Title: Combined Bulk and Surface Radiation Damage Effects at Very High Fluences in Silicon Detectors: Measurements and TCAD Simulations Authors: F. Moscatelli, et. al. Journal-ref: IEEE Transaction on Nuclear Science vol. 63, pp 2716-2723,2016, DOI: 10.1109/TNS.2016.2599560

Т	 TABLE III N DAMAGE MODE P TO 7×10 ¹⁵ N/CM	

Type	Energy	$\sigma_e(\text{cm}^{-2})$	$\sigma_h(cm^{-2})$	η (cm ⁻¹)
	(eV)			
Acceptor	Ec-0.42	1×10 ⁻¹⁵	1×10 ⁻¹⁴	1.613
Acceptor	Ec-0.46	7×10 ⁻¹⁵	7×10 ⁻¹⁴	0.9
Donor	Ev+0.36	3.23×10 ⁻¹³	3.23×10 ⁻¹⁴	0.9

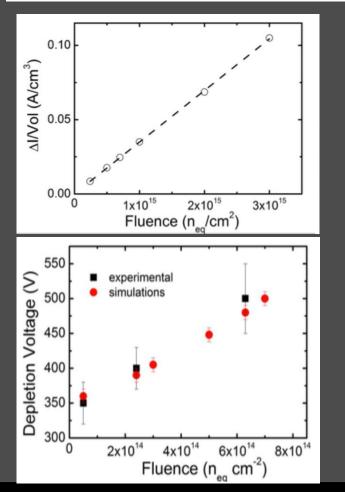
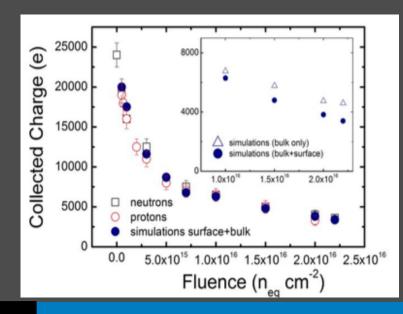



TABLE IV THE RADIATION DAMAGE MODEL FOR P-TYPE (IN THE RANGE 7×10¹⁵-1.5×10¹⁶ N/CM²)

Туре	Energy (eV)	σ_e (cm ⁻²)	$\sigma_h(cm^{-2})$	η (cm ⁻¹)
Acceptor	Ec-0.42	1×10-15	1×10-14	1.613
Acceptor	Ec-0.46	3×10-15	3×10 ⁻¹⁴	0.9
Donor	Ev+0.36	3.23×10 ⁻¹³	3.23×10 ⁻¹⁴	0.9

TABLE V THE RADIATION DAMAGE MODEL FOR P-TYPE (IN THE RANGE 1.6×10¹⁶-2.2×10¹⁶ N/CM²)

Туре	Energy	$\sigma_e(cm^{-2})$	$\sigma_h(\text{cm}^{-2})$	η (cm ⁻¹)
	(eV)			
Acceptor	Ec-0.42	1×10 ⁻¹⁵	1×10 ⁻¹⁴	1.613
Acceptor	Ec-0.46	1.5×10-15	1.5×10 ⁻¹⁴	0.9
Donor	Ev+0.36	3.23×10 ⁻¹³	3.23×10 ⁻¹⁴	0.9

Ashutosh Bhardwaj