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Historical Perspective 
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§  1951: First detectors with Germanium pn-Diodes (McKay) 
§  1960: Working samples of p-i-n Detectors for α & β Spectroscopy 

(E. M. Pell)  
§  1964: Use of Si detectors in experimental Nuclear Physics (G. T. 

Ewan & A. J. Tavendale) 
§  1980: Fixed target experiment with a planar diode (J. Kemmer) 
§  1980-86: NA11 & NA32 experiment at CERN to measure charm 

meson lifetimes 
§  1990ies (Europe): LEP Detectors (e.g. DELPHI) 
§  1990ies & later (US): CDF & D0 at Tevatron, Fermilab 
§  Today: All Detectors at LHC with upto 200 m2 active area (CMS) 
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Historical Perspective 
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Why wasn’t silicon used earlier?  
• Needed micro‐lithography technology ⇒ cost 
• Small signal size (needed low noise amplifiers) 
• Needed read‐out electronics miniaturization  (transistors, ICs) 
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Historical Perspective 
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NA11 @ CERN : fixed target experiment ~ 1980 
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Historical Perspective 
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NA11 @ CERN : fixed target experiment ~ 1980 
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Historical Perspective 
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CDF @ Fermilab : 
Collider beam 
Experiment 
Top Quark 
Discovery 

John Ellis visioned at a 
conference in Lake 
Tahoe, California in 
1983, “To proceed with 
High Energy Particle 
Physics, one has to tag 
the flavour of the 
quarks!” 
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Evolution of Si Detectors in EHEP  
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Large Silicon Sytems in EHEP  
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DELPHI  (1996)

~ 1.8m2 silicon area

175 000 readout channels

CDF SVX IIa (2001-)

~ 11m2 silicon area

~ 750 000 readout channels
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Large Silicon Sytems in EHEP  
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CMS Si Tracker (2007)            
   ~12,000 modules 
   ~ 206 m2  silicon area 
   ~ 25,000 silicon wafers 
   ~ 10M readout channels  
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Large Silicon Sytems in EHEP  
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Highlight 
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Some Basic Facts  

ADNHEAP 2017 13 

�  By far the most important semiconductor for detector development 
is silicon 

�  The discovery of silicon (L. silex: silicis, flint) - silicium in French - is 
generally credited to Berzelius 1824 

�  Deville in 1854 first prepared crystalline silicon, the second allotropic 
form of the element 

�  Silicon is present in the sun and stars  
�  principal component of a class of meteorites known as aerolites. It is also a 

component of tektites, a natural glass of uncertain origin. 
�  Silicon makes up 25.7% of the earth's crust by weight 

�  is the second most abundant element, being exceeded only by oxygen.  
�  Silicon is not found free in nature, but occurs chiefly as the oxide 

and as silicates.  
�  Sand, quartz, rock crystal, amethyst, agate, flint, jasper, and opal are some of the 

forms in which the oxide appears. Granite, hornblende, asbestos, feldspar, clay, 
mica, etc. are but a few of the numerous silicate minerals.  
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Why Silicon 
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Silicon has properties which make it especially desirable as a 
detector material 
�   Small band gap Eg = 1.12 eV ⇒ E(e-h pair) = 3.6 eV (≈ 30 eV for gas 

detectors) (good signal) 
�  High specific density 2.33 g/cm3 ; dE/dx (M.I.P.) ≈ 390 eV/µm ≈ 108 e-h/

µm (average)  
�  High carrier mobility µe =1450 cm2/Vs, µh = 450 cm2/Vs ⇒ fast charge 

collection (<10 ns)  
�  Very pure < 1ppm impurities and < 0.1ppb electrical active impurities, long 

mean free path (good charge collection efficiency) 
�  low dark current: Can be operated in air and at room temperature 
�  low Z (low multiple scattering) 
�  Rigidity of silicon allows thin self supporting structures  
�  Very well developed technology: microscopic structuring by industrial 

lithography 
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S/N ratio in intrinsic Silicon 
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Intrinsic charge carrier (T = 300 K): 
ni dA = 1.45⋅1010cm-3 ⋅0.03cm⋅1cm2 

 ≈ 4.35⋅108 e−h+ pairs 
Number of thermal created e–h+-pairs are four orders 
of magnitude larger than signal!!! 
 
⇒ Need to reduce free charge carriers, i.e. deplete the 
detector 
 ⇒ Most detectors make use of reverse biased p-n 
junctions 
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Silicon Detector (Reverse Bias p-n junction)  
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•  Make the p-n junction at the surface of a silicon wafer with the bulk being n-type
•  Reverse Bias to extend the depletion region throughout the n bulk
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Silicon Sensors (2) 
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Principle cont.. 
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Resolution σ depends on the pitch p (distance from strip to strip) 
-  e.g. detection of charge in binary way (threshold discrimination) & using center of strip 

as measured coordinate results in  
  
-  typical pitch values are 20 µm– 150 µm ⇒ 50 µm pitch results in 14.4 µm resolution 
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Signal to Noise Ratio 
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I-V & C-V Characterisitics 
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Silicon Detector Fabrication 
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CMS Preshower Detector (DU Contribution) 
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• No constraints on the support 
material 
• Si sensors and front-end hybrids 
glued to a ceramics support 
• Everything supported by an Al 
tile 
• Cooling through the tile 
• Si sensor: 63×63 mm2 

• 32 strips, 1.9 mm pitch 
• 4300 modules, 18 m2 of silicon 
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Different Configurations 
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Strip Detectors 
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Single sided Strip Detectors 
For tracking. Provides 1-D information. 

Double sided Strip Detectors 
For tracking. Provides 2-D information. 
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Radiation Damage 
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Radiation Damage: BulkDamage 
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 Macroscopic Effects of Bulk Damage 
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HL-LHC Environment 
LHC to undergo upgrade in year 2022 à High Luminosity - LHC 

The current tracker 
can not survive in HL-
LHC !  L 

A ‘NEW TRACKER’ 
is required !! 

New Tracker: Radiation hard material, granular à Material growth techniques, substrate, implant, 
configuration, thickness, geometry are crucial parameters 

* H. Behnanian. 13th IPRD. 2014 JINST 9 C04033 
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HPK Campaign 

ADNHEAP 2017 

Optimization in multi-parameter space (164 
wafers):   
àSi bulk material, thickness, polarity, layout- 
     parameters like strip pitch, etc. 
à Have one company implement identical     
     structures on different silicon wafers: 
à n-type and p-type(with p-stop and p-spray 

strip isolation) 
à Characterizations are done before and after 

irradiations (both with 23MeV protons @ KIT 
and reactor neutrons @ JSI, Ljubljana) 

29 



Ashutosh Bhardwaj 

DU’s Contribution in Outer Tracker 
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�  CMS Phase II Tracker R&D for Si strip 
sensors is done under HPK Campaign 

�  MSSD measurement results are 
complemented with TCAD device 
simulation 
�   Excellent agreement of Cint with un-

irradiated sensors 
�  Comparison with both n-type and p-type 

substrates  
�   R&D for p-stop/p-spray design is ongoing 

�  Trap model developed and further R&D 
for Radiation Damage simulation is in 
progress 
�  effects on leakage current, full depletion 

voltage, Charge collection efficiency and 
double peak electric field effect are in 
agreement 

�  2-D simulation for pixel sensors is 
performed 
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Charge Collection Efficiency: P-type OR  
N-type substrate 
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Noise Distribution: Gaussian Fitted 
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p-in-n	&	n-in-p	
Non-irradiated	

p-in-n	a@er	
irradia.on	
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Electric Field: P-type OR N-type substrate 

* R. Ranjeet et al., Simulations for Hadron Irradiated n+p- Si Strip Sensors Incorporating Bulk and 
Surface Damage, presented at 23rd RD50 Workshop, CERN, Switzerland (2013). 

Increasing fluence à More radiation 
damage à Higher bulk & surface 
damage à QF grows à E.Field @ 
implant edges shoots! 

Reverse effect of QF on E.Field for p-
type substrates. Increase in QF, decreases 
E.Field! 
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Inter-strip Resistance 

*R. Dalal., G. Jain, et al 
Simulation of Irradiated Si 
Detectors. POS (Vertex 2014). 

Rint is a surface property. 
à It was thought that it is affected 
by surface damage (QF) only. 

Increase in QF attracts more e-s 
towards the n+ side of the detector. 
à Rint decreases. 
 
Not consistent with measurements! 

Both surface (QF + Nit) & bulk damage 
traps play a role in deciding Rint! 

Nit = 2 acceptor type 
traps 
 
Bulk traps = 
Acceptor & Donor 
traps, but near the n+ 
implant, acceptor 
traps are more 
ionized 
 
à These two 
COMPENSATE the 
effect of 
accumulation of e-s 
by QF (positive fixed 
oxide charge) 
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India in CMS Outer Tracker- Current Status 
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Acronyms used above:  
SQC (Sensor Qualification 
Center) 
 MMC (Module Mechanics 
Center) 
 MPC (Module Production 
Center) 
 LIC (Ladder Integration 
Center) 
TDR (Technical Design 
Report) 
EDR (Engineering Design 
Report) 
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Detector Development in India 
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Detector Dimensions: 3.4 cm x 6.0 cm 
 Strip width: 30 µm, Strip pitch: 55 µm 
# of Strips in each detector: 512 
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Measurement Results  
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Coupling Capacitance (specs: >110pF) 

Dielectric Current (specs: < 1nA @ 10V) 
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Charge Collection 
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Ongoing R&D: Novel Detectors 
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3D Columnar Detectors 
Faster. Provides 2D information. 

§  Deep holes are etched into the silicon finally serving as electrode junctions 
§  The depletion zone is in the horizontal direction instead of the standard vertical one 
§  The electrons and holes travel a much shorter way & are therefore less sensitive to 

trapping. 
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CMOS Detectors (Monolithic Active Pixels) 
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§  Electrons created inside the shallow depletion zones are fully collected while 
electrons from the EPI layer randomly walk towards the N-well and with an excellent 
lifetime behaviour, only some of them will be trapped.  

§  Nevertheless, CMOS devices have an excellent signal-to-noise ratio due to their very 
small capacitances and low currents, therefore the low noise compensates for the low 
signal. 



Low Gain Avalanche Detector 

Purpose of the p+ layer 
•  PN junction formed between n+ implant & p-well 
•  A strong electric field builds in a local region 
•  Avalanche starts at critical electric field (> 3e5 V/cm) 
•  Local & controlled ‘charge multiplication’ 
•  Internal gain increases signal 

LGAD – traditional PIN detector, 
but with a deeper p-type multiplication 
layer (also called p-well)  just below 
the n+ implant. 

*Marta Baselga, 8th Trento workshop, 2013. 

*Giulio Pellegrini, 23rd RD50 workshop. 

Peak Electric Field 
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Simulated Result: Non-Irradiated 

p-well conc. = 8.75e16cm-3  
p-well conc.  = 9.75e16cm-3 
p-well conc. = 1.025e17cm-3 

p-well conc. = 8.75e16 cm-3 

p-well conc.  = 9.75e16 cm-3 

p-well conc. = 1.025e17 cm-3 
480 ke-s 

270 ke-s 

170 ke-s 

72 ke-s 

# Reference Signal = 24 ke-s 

Because: increase in p-well conc. builds a stronger p-well-n+ 
junction. Hence a higher peak electric field generates at the 
junction. This provides larger avalanche and thereby larger gain. 

Increase in p-well conc. increases LGAD gain! 

@ 200 V 

Peak E.field 

Breakdown Voltage & Gain 

VBD 

Gain @ 200 V 
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* R. Dalal, G. Jain, A. Bhardwaj, K. Ranjan. TCAD simulation of Low Gain Avalanche 
Detectors. NIM A. Manuscript accepted. 
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SUMMARY & Future Outlook 
§ Silicon sensors are widely used in HEP experiments 
§ Although used since more than 35 years (NA11, 1980) continuous developments 

enable usage in unprecedented harsh environments 
§ Silicon detectors since early 1990s, very good position resolution, good tracking 

detectors  
§ HL-LHC radiation scenario is challenging: Sensor developments for HL-LHC 

detector upgrades (~2024) are in the transition from R&D to prototyping 
§ TCAD simulations is a useful tool to understand device behaviour in irradiated 

environments à tune models and simulation parameters 
§ DU participated actively in tracker HPK campaign 
§ DU Jointly with other Indian Institutes in CMS, is planning to participate in the 

Phase-II Tracker Upgrade 
§ DU is involved in development of AC coupled Si sensors in India 
§ New detector technologies are under exploration 
§ Silicon sensor development will stay exciting! Stay tuned 

44 
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CMS High Granularity Calorimeter 
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•  600m2 (!) of silicon, 6M channels 
•  hexagonal pad detectors on 8” wafers (0.5/1cm2 individual pad size) 
•  tiny space for integration 
•  F<1x1016neq/cm2 and MIP sensitive ! (large capacitance ~ 40pF!) 
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Structures in SILVACO 
(1) Pad Diode (2) Strip Detector 

(3) Low Gain Avalanche Detector 

P-type 
Substrate 
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Pad Diode - IV 

ADNHEAP 2017 

* C
M
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etector N

ote. Sim
ulation of Silicon D

evices for the C
M

S Phase II Tracker U
pgrade. 

C
M

S D
N

-2014/016. 

50 



Ashutosh Bhardwaj 

Pad Diode - C-2V 
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Pad Diode - Transient Current Technique 

𝐶𝐶=𝑎𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝐼𝑅 𝑙𝑎𝑠𝑒𝑟 𝑇𝐶𝑇 𝑐𝑢𝑟𝑣𝑒  

TC
T voltage (V

) 

Transient Time (s) 

Detector is reverse dc biased & an Infrared laser is shone from top or bottom. à Transient 
voltage is measured as a function of time. 
Importance: Detector charge collection profile with voltage & fluence. 

* R
. D

alal et al., PoS (Vertex2014).. 
 * G

. Jain. W
orkshop on C

ontem
porary 

Trends in H
igh-Energy Physics and Experim

entation. Panjab U
niversity. M

arch 2014. 
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Simulated Result: Irradiated 

p-well conc.  = 
9.75e16 cm-3 

@ 500 V 

@ 500 V 

Peak E.field 

Bulk E.field 

LGAD gain decreases with increase in fluence! 

Because: 1. Peak e.field & its width decreases with fluence. 
E.field grows at backside of detector. 
2. E.field just below the p-well region drops to very low value. 
Inefficient charge collection. 
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* R. Dalal, G. Jain, A. Bhardwaj, K. Ranjan. TCAD simulation of Low Gain Avalanche 
Detectors. NIM A. Manuscript accepted. 
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G. Kramberger, Radiation damage models, comparison and perfomance of TCAD simulation, Vertex 2016, Elba 
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Inter-pixel Resistance & Max. E.Field 

Poor Isolation 

Good Isolation 

Poor Isolation 

Good Isolation 

A higher concentration & a deeper 
pspray/pstop provides good isolation. 
But, this also leads to a rise in the electric 
field! 

Therefore, an optimized concentration & 
depth of the isolation structure has to be 
chosen. 
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TCAD Simulations: Models & Numerical Methods 

Physical Models: 
a)  Mobility – Concentration 

dependent, parallel field 
dependent 

b)  Impact ionization – Selberherr, 
Van Overstraten, Grant’s, etc. 

c)  Generation & Recombination – 
Shockley Read Hall 

d)  Oxide physics – Fowler-
Nordheim, Interface charge 
accumulation 

e)  Statistics  –  Boltzmann, Band 
Gap Narrowing 

f)  Tunnelling – Band-to-band, Trap-
assisted 

 
Numerical Methods: 
a)  Gummel 
b)  Newton 
c)  Block 

 Equations for 
unknowns (n, p, φ): 

These equations 
use one of these 
specified models. 

•  These equations 
are solved using 
one of the methods. 

•  Extraction & 
Calculation of 
quantities  
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Width & Pitch 
* C

M
S D

etector N
ote. Sim

ulation of Silicon D
evices for the C

M
S Phase II Tracker U

pgrade. C
M

S D
N

-2014/016. 

HPK Campaign 

As the strip pitch increases, the electric 
field at the implant edge rises. 

As the strip width increases, the electric field 
at the implant edge decreases. 
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 ‘Simulation & Modeling’ 
A ‘simulation’ is an ‘imitation of reality’ !! 
§  How does it work?                                    

§  The physical structure to be simulated 
§  The choice of  physical models  
§  The numerical methods to solve the  physical equations 
§   The bias conditions for the electrical characteristics 

Modeling: Comparison between Simulations & Measurements!!  
§  Choice of models & model parameters 
§  Tweaking of process & design parameters 
§  Optimization (multi-dimensional phase space) à Agreement of Macroscopic properties  
§  Fabrication of  sensors with optimized design parameters 
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G. Kramberger, Radiation damage models, comparison and perfomance of TCAD simulation, Vertex 2016, Elba 
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Title: Combined Bulk and Surface Radiation Damage Effects at Very High Fluences in Silicon Detectors: Measurements and TCAD Simulations 
Authors: F. Moscatelli, et. al. Journal-ref: IEEE Transaction on Nuclear Science vol. 63, pp 2716-2723,2016,  DOI: 10.1109/TNS.2016.2599560 
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