An efficient approach to manage DMA descriptors and evaluate PCIe based DMA performance for ALICE Common Readout Unit (CRU)

Project leaders
Tapan Kumar Nayak
Tivadar Kiss

Senior Developers/Coordinators
Erno David
Filippo Costa
Jozsef Imrek
Amlan Chakrabarti

Developers
Jubin Mitra
Sanjoy Mukherjee*
Shuaib Khan
Tuan Mate Nguyen
Pascal Boeschoten
Rourab Paul

* Bose Institute
Agenda

- Overall view of CRU
- PCIe-DMA
 - Basics
 - Architecture (FPGA based)
- DMA descriptor management
- User logic internal architecture (Block Diagram)
- Features of user logic
- Result
• **PCIe (Peripheral Component Interconnect)**:
 1. Protocol implemented in FPGA as per PCIe-SIG standard
 2. Can handle input BW (avg ~96 Gbps) as PCIe offers large BW (User BW ~114 Gbps in Gen3 ×16 mode)
 3. Consume no FPGA resource as it is available as Hard IP from Altera.

• **DMA (Direct Memory Access)**:
 1. Protocol to push data through PCIe interface.
 2. DMA evaluation goal: Use as much possible the PCIe- BW.
 3. Mainly based on Look Up table approach known as descriptor table.
DMA PROFILE:

Throughput:

1. Old: ~51 Gbps

2. New:
 A. With clean FW: ~53 Gbps
 B. With clean FW and SW: ~55 Gbps

PCIe DMA idle time:

MAX: ~3 us
AVG: ~160 ns
FW WR FULL ON CHIP MEM & PULL FOUR DESCRIPTORS

FW WR FULL ON CHIP MEM & PULL NXT FOUR DESCRIPTORS

DMA TRANSFER GOING ON

ALL STATUS RXD BY DAQ SW

ACK BY DAQ SW

CARD FIFO

Advanced Detectors for Nuclear High Energy and Astroparticle Physics

SW FIFO
NON PIPELINED DMA

WR FULL ON
CHIPMEM &
PULL FOUR
DESC.

DMA
TRANSFER
GOING ON

ALL STATUS
RXD BY
DAQ SW

ACK BY
DAQ SW

WR FULL ON
CHIPMEM &
PULL FOUR
DESC.

PG(0-3) WR P

PG 0-3 DMA MV

PG 0-3 DMA MV

PG 0-3 DMA MV

PG 0-3 WR P

idle Time

Advanced Detectors for Nuclear High Energy and
Astroparticle Physics
FW WR FULL ON CHIP MEM & PULL FOUR DESCRIPTORS

1. MEM WR
2. PULL GEN DESC

DAQ SW
1. STS RX
2. ACK = 1

DMA TRANSFER GOING ON

CARD FIFO

SW FIFO
DMA TRANSFER GOING ON

1. MEM WR
2. PULL GEN DESC

WAIT FOR NEXT STATUS

PG(0-3) WR

PG0 DMA MV

PG1 DMA MV

PG2 DMA MV

PG3 DMA MV

PG0 DMA MV

current

pending

pending

new

STS = 1

ACK = 1
<table>
<thead>
<tr>
<th>OLD DMA IF LOGIC</th>
<th>NEW DMA IF LOGIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. No handshaking signal from FW side to SW side to trigger the DMA</td>
<td>Ready signal from FW side to SW side to fetch the data</td>
</tr>
<tr>
<td>2. DMA reg. programming was done by SW</td>
<td>Later ready signal is used internally by FW for DMA programming</td>
</tr>
<tr>
<td>3. Status memory has been used for ack. generation</td>
<td>Status memory has been used for ack. generation</td>
</tr>
<tr>
<td>4. No monitoring signal for debugging</td>
<td>Added several monitoring processes to debug the current status of DMA transfer</td>
</tr>
<tr>
<td>5. Good for DMA performance evaluation.</td>
<td>Good for DMA evaluation plus data consistency.</td>
</tr>
</tbody>
</table>

Advanced Detectors for Nuclear High Energy and Astroparticle Physics
Advanced Detectors for Nuclear High Energy and Astroparticle Physics

Run time:
5 Mins =>

Run time:
30 Mins =>

Run time:
60 Mins =>

Run time:
120 Mins =>

DMA PERFORMANCE

Run time:
5 Mins =>

Run time:
30 Mins =>

Run time:
60 Mins =>

Run time:
120 Mins =>

Advanced Detectors for Nuclear High Energy and Astroparticle Physics

2/16/2017
THANK YOU