# $LaBr_3(Ce)$ : a new generation detector for timing spectroscopy

#### Sourav Kumar Dey

Saha Institute of Nuclear Physics

February 15, 2017



4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 今 Q ペ
1/18

#### Contents

- Properties of common inorganic scintillators
- Characterization of LaBr<sub>3</sub>(Ce) and BaF<sub>2</sub> detectors
- Application of LaBr<sub>3</sub>(Ce) and BaF<sub>2</sub> scintillators in perturbed angular correlation (PAC) spectroscopy

- Principle
- Experimental details
- Studies in HfNi<sub>3</sub> alloy
- Conclusion

#### Application of scintillation detectors

- Nuclear energy and timing spectroscopy (TDPAC, Positron annihilation spectroscopy)
- High energy physics experiments
- Dark matter search experiment (to detect the recoil spectrum by WIMS)
- Geological exploration
- Medical imaging (PET)

#### Characteristics of an ideal scintillator

- High Z and density (for high detection efficiency)
- High light output and linearity with energy (for energy spectroscopy)
- Fast response time (for timing spectroscopy)
- Transparent to emitted light (for minimum loss of light)
- Non hygroscopic
- Low afterglow

## Properties of common inorganic scintillator

| Scintillators                     | Light yield<br>(photons/keV) | 1/e Decay<br>time (ns) | Wavelength of<br>maximum<br>emission (nm) | Refractive index (gm/cm <sup>3</sup> ) | Density | Z <sub>eff</sub> | Hygroscopic |
|-----------------------------------|------------------------------|------------------------|-------------------------------------------|----------------------------------------|---------|------------------|-------------|
| LaBr3(Ce)                         | 63                           | 16                     | 380                                       | 1.9                                    | 5.08    | 45.22            | yes         |
| BaF2(fast component)              | 1.8                          | 0.6-0.8                | 220                                       | 1.54                                   | 4.88    | 50.96            | slightly    |
| BaF <sub>2</sub> (slow component) | 10                           | 630                    | 310                                       | 1.50                                   | 4.88    | 50.96            | slightly    |
| Nal(TI)                           | 38                           | 250                    | 415                                       | 1.85                                   | 3.67    | 50.6             | yes         |
| LSO                               | 32                           | 41                     | 420                                       | 1.81                                   | 7.1     | 65.5             | no          |
| CsI(TI)                           | 54                           | 1000                   | 550                                       | 1.79                                   | 4.51    |                  | slightly    |

The data presented here are taken from Saint-Gobain scintillation detector operating manual.

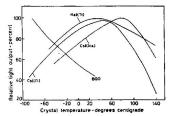



Figure: Response of various inorganic scintillators with temperature

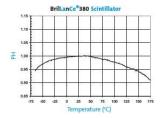



Figure: Response of LaBr<sub>3</sub>(Ce) scintillator with temperature

◆□ → < 団 → < 茎 → < 茎 → < 茎 → < 茎 → < ○ へ () 5/18

# Light emission spectra for different inorganic crystals

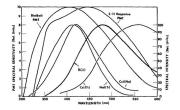



Figure: Emission spectra of several inorganic scintillators

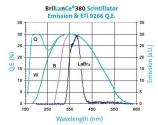



Figure: Scintillation emission spectrum of the BrilLanCe 380 crystal and Quantum Efficiency of a bialkali ETI9266 PMT with (B)Borosilicate, (W)UV glass, and (Q)Quartz face plates

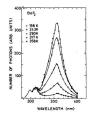
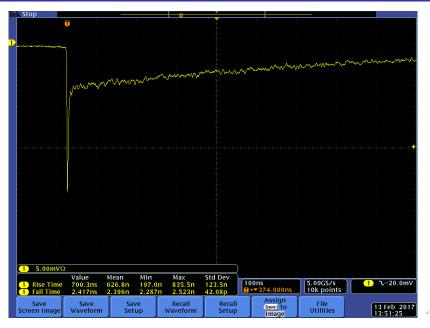




Figure: Scintillation emission spectra from  $BaF_2$  measured at various temperatures

Э

# Anode pulse of $BaF_2$ detector (slow and fast component)



# Anode pulse of LaBr<sub>3</sub>(Ce) detector



# Energy resolutions of LaBr<sub>3</sub>(Ce) and BaF<sub>2</sub> scintillation detectors

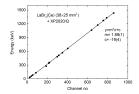



Figure: Energy calibration of LaBr3(Ce) scintillation detector

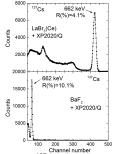
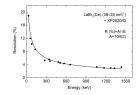




Figure:  $\gamma$ -ray spectra of <sup>137</sup>Cs showing relative light output of LaBr<sub>3</sub>(Ce) and BaF<sub>2</sub>. PMT, HV, amplifier settings remain same.





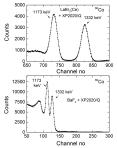
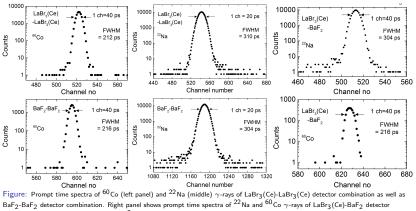




Figure: Difference in energy resolution between LaBr<sub>3</sub>(Ce) and BaF<sub>2</sub> scintillators for  $\frac{69}{2}$ Co  $\gamma_{c}$ ray source  $\equiv$   $\rightarrow$   $\langle$   $\equiv$   $\rightarrow$   $\equiv$ 



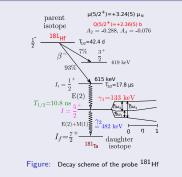
combination. Crystal sizes :  $38 \times 25 \text{ mm}^2$ ; PMT : XP2020/Q

- The time differential perturbed angular correlation (TDPAC) technique measures the effect of perturbations of the  $\gamma$ - $\gamma$  angular correlation of the probe nucleus through the hyperfine interaction.
- The nuclear moments (electric quadrupole moment or magnetic dipole moment) of the intermediate level of probe nucleus interact with the hyperfine fields (electric field gradients or magnetic field) present in the investigated sample
- Using this technique, stuctural and magnetic properties of crystalline solids can be studied. Measured electic field gradients by this technique can be compared with the density functional theory (DFT) based calculations.

- The time differential perturbed angular correlation (TDPAC) technique measures the effect of perturbations of the  $\gamma$ - $\gamma$  angular correlation of the probe nucleus through the hyperfine interaction.
- The nuclear moments (electric quadrupole moment or magnetic dipole moment) of the intermediate level of probe nucleus interact with the hyperfine fields (electric field gradients or magnetic field) present in the investigated sample
- Using this technique, stuctural and magnetic properties of crystalline solids can be studied. Measured electic field gradients by this technique can be compared with the density functional theory (DFT) based calculations.

- The time differential perturbed angular correlation (TDPAC) technique measures the effect of perturbations of the γ-γ angular correlation of the probe nucleus through the hyperfine interaction.
- The nuclear moments (electric quadrupole moment or magnetic dipole moment) of the intermediate level of probe nucleus interact with the hyperfine fields (electric field gradients or magnetic field) present in the investigated sample
- Using this technique, stuctural and magnetic properties of crystalline solids can be studied. Measured electic field gradients by this technique can be compared with the density functional theory (DFT) based calculations.

# Principle of PAC technique


### Angular correlation of a $\gamma\text{-}\gamma$ cascade

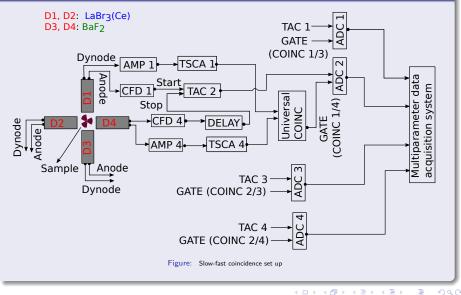
$$W(\theta) = \sum_{\substack{k=0 \ even}}^{k_{max}} A_k P_k(\cos\theta),$$
 Unperturbed

$$W(\theta, t) = \sum_{k=0 \atop even}^{\kappa_{max}} A_k G_k(t) P_k(\cos\theta), \quad \text{Perturbed}$$

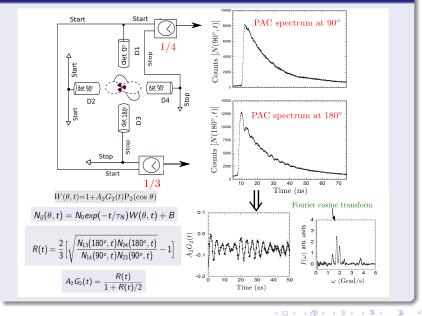
- $A_k$ : Angular correlation coefficient
- $G_k(t)$  : Perturbation function

#### Nuclear quadrupole interaction




### Perturbation function

$$\mathcal{G}_{2}(t) = \left[ \mathcal{S}_{20}(\eta) + \sum_{i=1}^{3} \mathcal{S}_{2i}(\eta) cos(\omega_{i}t) exp(-\delta \omega_{i}t) 
ight]$$


- δ: Frequency distribution width arising from lattice imperfections or chemical inhomogeneities
- $\omega_i$ : Transition frequencies between the sublevels of the intermediate state which arise due to hyperfine splitting

うく(や 12/18

# Schematic diagram of the four detector PAC spectrometer : $\mathsf{LaBr}_3(\mathsf{Ce})\text{-}\mathsf{BaF}_2$ detector setup



#### Schematic of PAC data reduction



#### PAC spectrum in stoichiometric sample of HfNi<sub>3</sub>

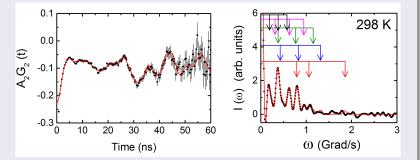



Figure: Figure in the left shows PAC spectrum for the  $HfNi_3$  sample at room temperature and the right one shows the corresponding Fourier cosine transform.

| Temperature (K) | Component | $\omega_Q$ (Mrad/s) | η       | $\delta$ (%) | f(%)  | Assignment                       |
|-----------------|-----------|---------------------|---------|--------------|-------|----------------------------------|
| 298             | 1         | 32.0(3)             | 0       | 0            | 32(2) | HfNi <sub>3</sub>                |
|                 | 2         | 52.6(4)             | 0       | 0            | 23(2) | Hf                               |
|                 | 3         | 94.8(6)             | 0.67(2) | 0            | 14(2) | Hf <sub>8</sub> Ni <sub>21</sub> |
|                 | 4         | 70.6(6)             | 0.38(3) | 0            | 15(2) | $Hf_2Ni_7^{(1)}$                 |
|                 | 5         | 64.3(8)             | 0       | 0            | 16(2) | $Hf_2Ni_7^{(2)}$                 |

S. K. Dey, C. C. Dey, S. Saha, J. Belošević-Čavor, Intermetallics 84 (2017) 112.

- 2 S. K. Dey, C. C. Dey, S. Saha, J. Phys. Chem. Solids 95 (2016) 98.
- 8 P.R.J. Silva, H. Saitovitch, J.T. Cavalcante, M. Forker, J. Magn. Magn. Mater. 322 (2010) 1841.

### Conclusion

- LaBr<sub>3</sub>(Ce) is found to be best scintillator for energy and timing spectroscopy experiments.
- Due to the superior energy and time resolutions of LaBr<sub>3</sub>(Ce) detector, it has been possible to distinguish weak EFGs corresponding to different phases that present in the stoichiometric sample of HfNi<sub>3</sub> by TDPAC spectroscopy.

#### Conclusion

- LaBr<sub>3</sub>(Ce) is found to be best scintillator for energy and timing spectroscopy experiments.
- Due to the superior energy and time resolutions of LaBr<sub>3</sub>(Ce) detector, it has been possible to distinguish weak EFGs corresponding to different phases that present in the stoichiometric sample of HfNi<sub>3</sub> by TDPAC spectroscopy.

# Thank You

◆□ → <圖 → < Ξ → < Ξ → < Ξ → のへで</p>