Test and Characterization of a silicon-tungsten calorimeter prototype at SPS-CERN

Outline:
- Physics Motivation
- Design and Geometry Optimization
- Mini-Prototype: Development and Test
- Full-Length Prototype: Fabrication and Characterization
- Summary
Physics Motivation:

✓ Test of pQCD prediction (pp collisions)
 ✓ Particle production
 ✓ Effect of small-x contribution

✓ To probe the initial condition (p-A collisions)
 ✓ Gluon density at small-x (down to 10^{-5} to 10^{-6})
 ✓ Study of Color Glass Condensate

✓ To probe the final state effects (A-A collisions)
 ✓ Opacity of medium: gamma-jets correlations.
 ✓ Parton energy loss in dense partonic matter.
Design and Geometry Optimization:

ALICE Experimental Set-up

FOCAL in ALICE
Design and Geometry Optimization:

Distance from IP in ALICE: 7 m

Radial distance
Inner: 6 cm (limited by beam pipe)
Outer: 80 cm

Rapidity Coverage
2.5<\eta<5.5

P_T range of particle detection
Up to 20 GeV/c

Choice of Configuration

- Sampling type Hybrid Calorimeter
- Detector: Silicon(1 cm^2 and 1 mm^2)sensors
- Absorber/Convertor: Tungsten
Design and Geometry Optimization:

- Opening angle between two decayed photons from π^0

- Reconstructed Invariant Mass of π^0 from its two decayed photons.
Challenges

- Measurement of physics observables
 - Measurements of Direct photons, Decayed photons and their disentanglement.

- Development of calorimeter
 - 1cm*1cm silicon pad sensors
 - Reading each and every channels individually.
 - Requirement of large dynamic readout electronics.
 - Development of data acquisition system
Mini-Prototype: Development and Test.

Si-Detector array

Two set ups used to extend the depth to 6th radiation length with four available detector plane.
Mini-Prototype: Development and Test.

Response of Pion to understand the MIP behavior

E_{dep} by EM-Shower initiated by electron within prototype

Conversion Curve Expt Vs Simulation

SM et all, NIMA A764 (2014) 24-29
Full-Length Prototype: Fabrication and Characterization

- Break down voltage > 500 Volts
- Leakage current ~ 10nA/cm²
- Capacitance at full depletion ~40pF/cm²
- Full depletion voltage 40 volts
- Dead space b/w 1 cm² pads ~ 110um
- Cross Talk probability ~ 10%
- Depletion width ~ 300um

Mechanical structure has ability to hold Hybrid configuration. Read out electronics can be arranged on top or side of the frame.

19-Layer prototype calorimeter at SPS

6*6 array of 1cm*1cm Silicon detector on a single wafer

HV connector
Connector for kapton cable to FEE boards
Bias resistors and capacitors
Response of Layer-no-07 of the full-length FOCAL prototype to 20 GeV Electron (Shower). Showed a nicely developed shower with mean ADC 3616.

Reconstruction of energy (ADC) deposited by EM-Shower (electron) within the full depth of the prototype calorimeter for different incident energies.
Full-Length Prototype: Fabrication and Characterization

\[\frac{dE}{dt} = \frac{E_0 \beta t^{(\alpha-1)} e^{-\beta t}}{\Gamma(\alpha)} \approx E_0 (t)^\alpha e^{-\beta t} \]

Secondary particle generation at smaller depth

Falling part of the profile due to collisional losses at larger depth
Full-Length Prototype: Fabrication and Characterization

Calibration of measured ADC with respect to incident energy. Found good linearity for range of incident energy probed.

Fitted with $E_{\text{dep}}(\text{ADC}) = a + b \times E_{\text{incidence}}$

$a = 4.5 \times 10^2; \ b = 1.7 \times 10^3$

Resolution $\sigma/E_{\text{deposition}}$

Fitted with $\frac{\sigma}{E_{\text{deposition}}} = a + \frac{b}{\sqrt{E_{\text{incidence}}}} + \frac{c}{E_{\text{incidence}}}$

$a = 0.06; \ b = 0.08; \ c = 0.48$

Energy Resolution can be expressed as

$\frac{\sigma}{E} = a + \frac{b}{\sqrt{E}} + \frac{c}{E} + \vartheta(E)$
Summarizing:

- An exhaustive geometry and physics simulation performed.
- A mini-prototype test has been done: A proof for the concept.
- Full depth prototype characterization was done experimentally.
- Satisfactory calorimeter performances confirmed.

Outlook

- Saturation effect seen.
- NEW ASIC ANU-INDRA is ready. Test results are satisfactory at laboratory test.
- Target: Test of full-depth prototype with the upgraded electronics, May 2017.

Saturation (signal) Effects: Well taken with large dynamic range (~2.6 pC) compare to previous one (~600 fC).
Acknowledgement

Department of Atomic Energy, Govt. Of India.
For Financial and Technical support in carrying on the R&D.

Thanks
Time-Line, Budget and Indian contribution for FOCAL R&D

Possibly construction and experiment of Mini-FOCAL with ALICE

- **2018 (LS2)**: First half 2017: LOI discussion/approval in LHCC.
- **2017-2019 (LS3)**: Converge on realistic design.
- **3Yrs**
 - R&D in pixel/pad sensors & readout.

- **2019-2020**: Finalise design
- **2021-2024**: Construction of FOCAL
- **Test and Installation in ALICE**
- **DAQ, DCS, DQM, Analysis software development**
- **7Yrs**

- **2023 (LS3)**: Aiming Final approval by ALICE for FOCAL in the beginning.
- **2031 (15Yrs)**: Detector Running and physics outputs.
Time-Line, Budget and Indian contribution for FOCAL R&D

<table>
<thead>
<tr>
<th>COMPONENTS</th>
<th>COST (kCHF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUNGSTEN</td>
<td>700</td>
</tr>
<tr>
<td>UNIT MECHANICS</td>
<td>500</td>
</tr>
<tr>
<td>SILICON SENSORS (PADS)</td>
<td>3100</td>
</tr>
<tr>
<td>PAD ELECTRONICS</td>
<td>300</td>
</tr>
<tr>
<td>MAPS + ELECTRONICS</td>
<td>1250</td>
</tr>
<tr>
<td>CABLES AND CONNECTIONS</td>
<td>200</td>
</tr>
<tr>
<td>SUPPORT AND INTEGRATION</td>
<td>1200</td>
</tr>
<tr>
<td>COOLING</td>
<td>600</td>
</tr>
<tr>
<td>TOTAL DETECTOR COST</td>
<td>7850</td>
</tr>
</tbody>
</table>

India will contribute
- Half of PAD detectors and associated electronics
- 1/3 of tungsten, mechanics, cables and connections, support and cooling

For Next 3 Years
- R&D on silicon detectors, electronics, integration and manpower
- Possibly construction of Mini-FOCAL as final prototype

For Coming 3 Years
- ~ 60 Cr INR
- 5 Cr INR
<table>
<thead>
<tr>
<th>Institute</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable Energy Cyclotron Centre, Kolkata</td>
<td>INDIA</td>
</tr>
<tr>
<td>Bhabha Atomic Research Centre, Mumbai</td>
<td>INDIA</td>
</tr>
<tr>
<td>Nikhef, Amsterdam</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Utrecht University, Utrecht</td>
<td>Netherlands</td>
</tr>
<tr>
<td>University of Tsukuba, Tsukuba</td>
<td>JAPAN</td>
</tr>
<tr>
<td>Center of Nuclear Study, Tokyo</td>
<td>JAPAN</td>
</tr>
<tr>
<td>Hiroshima University, Hiroshima</td>
<td>JAPAN</td>
</tr>
<tr>
<td>Tsukuba University of Technology, Tsukuba</td>
<td>JAPAN</td>
</tr>
<tr>
<td>Nagasaki Inst. Of Applied Science, Nagasaki</td>
<td>JAPAN</td>
</tr>
</tbody>
</table>

Institutes showed Interests

<table>
<thead>
<tr>
<th>Institutes showed Interests</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universidade de Sao Paulo, Sao Paulo</td>
<td>Brazil</td>
</tr>
<tr>
<td>Oak Ridge National Laboratory, Oak Ridge</td>
<td>USA</td>
</tr>
<tr>
<td>Jammu University, Jammu</td>
<td>INDIA</td>
</tr>
<tr>
<td>IITB, Mumbai</td>
<td>INDIA</td>
</tr>
<tr>
<td>IITI, Indore</td>
<td>INDIA</td>
</tr>
<tr>
<td>Czech Technical University of Prague, Prague</td>
<td>Czech Republic</td>
</tr>
<tr>
<td>University of Jyvaskyla, Jyvaskyla</td>
<td>Finland</td>
</tr>
<tr>
<td>University of Texas, Knoxville</td>
<td>USA</td>
</tr>
<tr>
<td>Wayne State University, Detroit</td>
<td>USA</td>
</tr>
<tr>
<td>University of Bergen, Bergen</td>
<td>Norway</td>
</tr>
</tbody>
</table>

Si-Pad Detectors and Large Dynamic range ASIC.

Si-Pixel Detectors (MAPS).

Si-Pad Detectors. Layer added options.
Acknowledgement
Department of Atomic Energy, Govt. Of India.
For Financial and Technical support in carrying on the R&D.

Thanks a lot for your SUPPORT