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Introduction 

 The detection of TeV-PeV 𝛾-rays gives 
evidence of galactic & extragalactic 
sources. 

 These sources mainly include pulsars, 
supernova, hypernova & blazars. 

 Detection : 
 Direct detection :-  

 Space based expts – EGRET, Large Area 
Telescope of Fermi Gamma-ray space 
Telescope (GLAST) 

 Indirect detection :- 
 Ground based expts – VERITAS, HESS-I 

& II, Milagro, HAWC, Cherenkov Telescope 
Array (CTA) etc… 

 Underground based expts – ICE CUBE, 
AMANDA, ANTARES etc… 

 

 The Iron Calorimeter detector [1] at India-
based Neutrino Observatory can detect 
muons from 𝜸-rays and can also measure 
their charge. 
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Schematic diagram of Υ-ray induced shower. 



Muons from Gamma-ray induced showers 

Gamma-ray (𝛾 𝐸𝛾 ∝ 𝐸𝛾
−(𝑏+1)) 
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( Most dominant production channels [2] ) 

 µ pair production  

      𝛾 + 𝑁 → 𝑁′ +  𝜇
+
 + 𝜇

−
  

 

 TeV region 

 𝐸𝜇~ 0.5 𝐸𝛾 

 photo production 
𝛾 + 𝑁 → 𝑁′ +  𝜋

±
 

         𝜋
±
→ 𝜇

±
 + ν𝜇 ν𝜇  

  

 GeV region 

 𝐸𝜇~ 0.25 𝐸𝛾 

 At high energy photo production is suppressed by muon pair production 

channel due to the decrease and increase in production cross-section with 

energy. 

b – spectral index 
𝑁 – nucleus of the atmosphere 

𝑁′ – scattered  nucleus  

µs flux   



ICAL at INO 
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Flux of cosmic ray muons vs depth 

 ICAL: Sampling Calorimeter, Rectangular in 

shape, Modular in structure, 3 modules (51 kt). 

 B field ~ 1.3 Tesla 

 Optimized for the detection of atmospheric 𝜈µ
′ 𝑠 and 

𝜈 µ
′ 𝑠. 

 It is proposed to built under rock cover ~ 1Km. 



Energy loss of high energy muons in rock 

 The energy loss rate  
𝑑𝐸

𝑑𝑋
= −𝛼 − β𝐸 

 The average muon energy [3] at depth X is 

𝐸𝑋 = 𝐸𝑆 + 
𝛼

𝛽
𝑒−𝛽𝑋 − 

𝛼

𝛽
 

 The minimum energy required for µ to reach a depth 
X,  

𝐸𝑚𝑖𝑛 = 
𝛼

𝛽
(𝑒𝛽𝑋 − 1) 

      
𝛼

𝛽
= 500 GeV, β ~ 4 x 10-6 gm/cm2, ρ rock = 2.89 gm/cm3 

  𝑬𝒎𝒊𝒏 ≥ 1 TeV (00) – 4.5 TeV (600) 

 Backgrounds : 
 Cosmic ray muons 

 Flux ~ 10-4 m-2 sr-1 s-1 for 3.8 Km water equivalent at INO 
site 

 They can be identified by looking events from a 
fixed direction where the number is large 
compared to the cosmic ray muons. 
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Surface energy vs energy at a 

depth of 1 Km for muon. 



Spectrum of muons from ϒ-ray 
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b = 0.3 b = 0.5 

b = 0.7 b = 0.9 

J0048.0+5449 J2321.1+5910 

J0310.4-5019 J0138.2+5811 

 The muon spectrum for observed non-transient Galactic sources (pulsars & 

supernova remnant) from “The 2nd Catalog of Hard Fermi-LAT Sources 

(2FHL)” [4] with photon energy flux in the energy range of 50 GeV to 2 TeV. 



Muon charge ratio 

 ICAL will use magnetic field ~1.3 T, which can identify 
the charge of µs. 

 Muons from cosmic ray [5] :- 

 

𝑟𝜇 ≡ 
𝑁𝜇+

𝑁𝜇−
= 

𝑓𝜋
1 + 1.1𝐸𝜇 𝑐𝑜𝑠𝜗 115 𝐺𝑒𝑉 

+ 
η𝑓κ

1 + 1.1𝐸𝜇 𝑐𝑜𝑠𝜗 850 𝐺𝑒𝑉 

1 − 𝑓𝜋
1 + 1.1𝐸𝜇 𝑐𝑜𝑠𝜗 115 𝐺𝑒𝑉 

+ 
η(1 − 𝑓κ)

1 + 1.1𝐸𝜇 𝑐𝑜𝑠𝜗 850 𝐺𝑒𝑉 

 

 

 Gamma-rays :-  
1.  Photo production –   

                     𝑟𝜇≡ 
𝑁
𝜇+

𝑁𝜇−
= 

𝑓𝜋
1+1.1𝐸𝜇𝑐𝑜𝑠𝜗 115 𝐺𝑒𝑉 

1−𝑓𝜋
1+1.1𝐸𝜇𝑐𝑜𝑠𝜗 115 𝐺𝑒𝑉 

 = 1.24 

2.  Muon pair production – 

𝑟𝜇 ≡ 
𝑁𝜇+

𝑁𝜇−
= 1 

 Using GEANT4 simulation [6] for ICAL µ the CID 
efficiency is 98% for energy of 4 – 20 GeV ( θ = 00 to 
700) 

 If CID efficiency is 80-90%, for 50 GeV muon using 
ICAL, then it can also identify the charge of muons 
from 𝛾 -ray. 
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The ratio between the flux of 𝜇+ to 𝜇− vs 

𝐸𝜇 from photon shower with any index and 

any influence, in case of both pion decay & 

muon pair production, and cosmic ray 

muons. 



Expected signal to noise ratio 
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Source 2FHL Spectral 

index 

TeV Km-2 S-1  S/ 𝑵  (µ+)    S/ 𝑵  (µ-) 

J0537.4-6908 0.15 0.126078 9.46361×10 6 1.11975×10 7 

J1703.4-4145 0.24 0.180379 1126.38 1332.75 

J1745.1-3035 0.25 0.167896 1035.74 1225.5 

J0048.0+5449 0.30 0.047685 4.39481 5.20001 

J0316.6+4120 0.34 0.083012 7.2855 8.62032 

J0319.7+1849 0.45  0.075522 0.473365 0.560093 

 In order to suppress the bg over signal it is very important to see their ratio. 

 The ratio has been calculated for non-transient galactic sources observed by LAT. 

 Number of events [7] N  = 𝐼𝜇 𝜃 . 𝐴. 𝑇. 𝛿𝜃 

                                    A = 768 m2, ICAL Transverse Area 

                                         T = 5 years, ICAL running period 

                                       𝛿𝜃 = 10, ICAL angular resolution 

 

 Photon energy flux in the energy range of 50 GeV to 2 TeV. 

 Signal to noise ratio for muon energy of 1 TeV. 

 

 



Summary 

 We have investigated the sensitivity of ICAL detector for the detection of 

HE µs from observed non-transient Galactic 𝛾 -ray sources from “The 2nd 

Catalog of Hard Fermi-LAT Sources”. 

 

 From the analysis it is found that, 𝛾 -ray sources with spectral index of  

     < 0.45 are more sensitive. 

 

 Because their flux is larger than the muons from cosmic rays which act as 

background to these signals. 

 

 In order to summarize the neutrino detector like Iron Calorimeter at India-

based Neutrino Observatory can be used as 𝛾-ray telescope. 
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BACKUP 

 Muon flux from gamma-rays : 

 Muon flux from pion decay [8,9] :-  

 

 

 

 

 Muon flux from direct muon-pair production [8,10] :-  

 

 

 

 

 

 Muon flux from cosmic ray [11] :-  
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