Characteristic simulations of stack of four Gas Electron Multipliers (GEMs)

Mriganka Mouli Mondal Institute of Physics, Bhubaneswar

People involved in the work :

S. Swain, P.K.Sahu(Institute of Physics), S.N.Nayak(Sambalpur University)

Advanced Detectors for Nuclear, High Energy and Astroparticle Physics Bose Institute, Kolkata, India

Outline

- GEM detector and their application
- Garfield++ Simulations
- TUNING DETECTOR
 - Fixing gain and tuning various fields
 - Gains, Transparency, and Ion backflow
- DETECTOR CHARACTERIZATION
 - Induced signals and time resolution
 - Position and energy resolutions

GEM

GEM in large scale experiments

- STAR forward tracking
- ALICE TPC readout
- CBM muon tracker

Standard pitch four layer GEM in IOP Lab

 Main objective: Retain physics performance in high rate operation

- continuous read-out of Pb-Pb events at 50 kHz collision

rate

- Operation of MWPC without gating grid would lead to massive space-charge distortions due to back-drifting ions
- Instead: Continuous read-out with micro- pattern gaseous detectors
- Advantages:
 - reduced ion backflow (IBF)
 - high rate capability
 - no long ion tail

Eore	3cm
E,] 2 mm
E ₂	2 mm
E _o	12 mm
Eind	2 mm
	_

IOP Looking for :

- GEM behavior with gas flow rate
- Long term stability

Simulation Framework

Garfield++

Magboltz : transport properties of electrons in gas mixtures Heed : ionization pattern produced along the track

webpage http://cern.ch/garfieldpp

Advantage : ROOT framework

ANSYS code : external field solver

Defining : geometry, boundary conditions, initial meshing --> Produce field maps

loading the mesh (ELIST.lis, NLIST.lis), the list of nodal solutions (PRNSOL.lis), and the material properties (MPLIST.lis);

Figure 1.1. Overview of the main classes in Garfield++ and their interplay.

For 4-GEM fabricated in IOP-lab

 $\overline{\Delta V}_{\text{GEM I}}$

 $\Delta V_{\text{GEM I}}$

400

- $\Delta V_{\text{GEM II}}$ (10300 √200 $\Delta V_{\text{GEM IV}}$ 100 Induction KeV/cm 4 Drift GEM12 3 GEM23 kV/cm GEM34 1000 2000 3000 5000 6000 4000 Voltage appied (Volt)
- Simulation study for the detector
- Tuning fields for proper operation region

Simulations in Garfield++

Transparency = fraction of n₁ entering in avalanche zone **Ion Backflow** = fraction of ions in entering the drift region Energy/Position **Resolution Induced signal** shapes Avalanche of electrons in GEM Holes

- -- single electron thrown at (0,0.0.7)
- -- 4 Layers
- -- Ar:CO₂ = 70:30

Avalanche And Absorption in GEM

with time

For a particular gas mixture the absorption much depend on field configuration

with z position

- All four layers behaves similar way
- Avalanche grows up with increasing gem layers

Voltge applied	ΔV _{GEM I}	ΔV _{GEM II}	ΔV _{GEM III}	ΔV _{GEM IV}
3000	229	239	238	245
3500	267	279	278	286
4000	306	319	318	327
4200	321	334	333	343
4400	336	350	349	359
4600	351	366	365	376
4800	367	382	381	392
5000	382	398	397	408

Filed

Drift = 2.08 kV/cm Tranfer₁₂ = 2.90 kV/cm gains ~1800 Tranfer₁₂ = 2.87 kV/cm Tranfer₁₂ = 3.12 kV/cm Induction = 3.03 kV/cm

We would play with fields : Induction, Drift and Transfer fields at effective gains~1800

Field Adjustment

- Induction field : high→ more transport to electrons at anode
- Transfer fields timing : gains, ion backflow and resolutions of the detector

Induction filed

Induction field set to 4kV/cm

Drift filed

Drift field set to 0.4kV/cm

Transfer Filed

Transfer field set to 4.0kV/cm

Transparency

• Transparency for GEM-I ~1 since electron with a momentum in z-direction left over a hole

• Drift filed is set usually to a low value = 0.4

The value set relatively high transparency

Drift = 0.4 kV/cm Tranfer₁₂ = 4.0 kV/cm Tranfer₂₃ = 2.90 kV/cm Tranfer₃₄ = 2.87 kV/cm Induction = 4 kV/cm

Gains with T23 and t34

- One need to choose T34 (1-1.5 kV) for higher gain
 - BUT we need to consider ion backflow

- Lower T34 significantly reduces ion backflow
- It is far above the acquired ion backflow (e.g in ALICE)

Our geometry SmP-SmP-SmP aligned hole geometry

- Large Pitch in between and misalignment can reduce ion backflow in great extent
 - Working on various geometry and misalignments

time in nano sec

Induced Signal timing and width

Resolution

Summary

- GEM simulation in Garfield++ with ANSYS based field calculations is being performed.
- 4-GEM stacks is being tuned and a field configuration is set to work in a preferred gain region
- Ion backflow is in the level of 6-10% and we need misalignment and pitch variation in alternative layers to reduce the value
- Width of the signal at anode plane is about 200 micron and gain width is coming in the range of 1%-2.5%
- Need to work more on induced signals

Backups

Energy peak

Nuclear Instruments and Methods in Physics Research A 450 (2000) 277–287

The induced current in a readout element :

 $i = q_{\rm em} \nabla V_{\rm w}^{\rm R} \cdot \boldsymbol{v}_e$

weighting field ² of the readout electrode V_{w}^{R} with unit potential applied v_{e} is the charge drift

For a 1 mm gap a full signal width will be about 20 ns for the drift velocity of "5cm/ micro s.

which contains the nodal solutions for the weighting field configuration

Fig. 12. Current and charge induction mechanisms on GEM electrodes: (a) drift, (b) upper GEM, (c) lower GEM, (d) readout. Note: (a) and (b) are not to the scale.

Fig. 13. Current components and their measurements.

Induced signals from 4-GEM

A typical signal and induced signal properties in preferable working region of the detector

• From electron collection and ion Tracking calculating : Gains, transparency, resolutions and ion backflow, etc

GEM simulations with Garfield++

ANSYS code : external field solver

Defining : geometry, boundary conditions, initial meshing --> Produce field maps

loading the mesh (ELIST.lis, NLIST.lis), the list of nodal solutions (PRNSOL.lis), and the material properties (MPLIST.lis);

Tracking electrons in Garfield++ Using class : ComponentAnsys123

Avalanche of electrons in GEM Holes

- -- single electron thrown at (0,0.0.7)
- -- 4 Layers
- -- Ar:CO₂ = 70:30