

Di-muon Measurements with the CBM Experiment at FAIR

Ekata Nandy VECC, Kolkata

"Advanced Detectors for Nuclear, High Energy and Astroparticle Physics"

Outline

CBM Experiment @ FAIR

- Overview of CBM experiment
- CBM Experimental set-up
- Experimental challenges

Simulation study on Dimuon measurement at CBM

- Design of Dimuon detection system
- Dimuon measurement technique
- Feasibility of detection of low mass vector mesons which decay into dimuon channel $[\rho,\omega,\phi \rightarrow (\mu+\mu-)]$.

Exploring QCD-phase diagram

- Two regions in phase diagram hadronic phase and Quark gluon plasma phase & they are separated by a phase boundary. Lot of efforts are being made to locate this phase boundary of nuclear matter both theoretically and experimentally.
- There are two extremes in QCD phase diagram: High temperature /low net baryon density and low temperature /high net baryon density region.

3

Exploring QCD-phase diagram

At very high temperature:

- N of baryons ≈ N of antibaryons Situation similar to early universe
- L-QCD finds crossover transition between hadronic matter and Quark-Gluon Plasma
- Experiments: LHC, RHIC top energy (√s = 200 GeV)

Exploring QCD-phase diagram

At very high temperature:

- N of baryons ≈ N of antibaryons Situation similar to early universe
- L-QCD predicts crossover transition between hadronic matter and Quark-Gluon Plasma
- **Experiments:** LHC, RHIC top energy (√s = 200 GeV)

At high baryon density:

- N of baryons >> N of anti-baryons Densities like in neutron star cores
- Models predict first order phase transition with possible existence of mixed phase.
- **Experiments:**BES at RHIC, NA61 CERN SPS, CBM at FAIR, NICA at JINR

Baryon density Evolution at CBM

Model calculation predicts that Matter density may reach 5-10 times normal nuclear density ($\rho^0 \sim 0.14 \, / \text{fm}^3$) depending on collision energy.

Ref: I.C. Arsene et al., Phys. Rev. C 75, 24902 (2007)

So we can expect a baryon rich QGP at CBM energy.

CBM Physics cases and observables

- The equation-of-state of high baryon density matter collective flow of hadrons
- Indication of Deconfinement phase transition at high $\rho_{_{\rm B}}$
 - –Yield ,spectra, collective flow of strange (K, Λ , Σ , Ξ , Ω), Charmed particles (J/ ψ , ψ ', D0, Ds, D \pm , Λ c) and dileptons
 - Charmonium suppression, J/ψ .
 - Strangeness enhancement
- QCD Critical End Point (CEP)

Event by Event fluctuations of conserved quantities and particle ratios (\mathbf{K}/π , ... $\mathbf{\Xi}/\pi$, $\mathbf{\Omega}/\pi$)

Onset of chiral symmetry restoration at high ρ_B

In-medium properties of hadrons will be changed. (Mass shift and broadening in the medium). $(\rho,\omega,\phi \rightarrow e^+e^-(\mu^+\mu^-)$

CBM Physics cases and observables

- The equation-of-state of high baryon density matter collective flow of hadrons
- Indication of Deconfinement phase transition at high $\rho_{_{\rm B}}$
 - –Yield ,spectra, collective flow of strange (K, Λ , Σ , Ξ , Ω), Charmed particles (J/ ψ , ψ ', D0, Ds, D \pm , Λ c) and dileptons
 - Charmonium suppression, J/ψ .
 - Strangeness enhancement
- **QCD Critical End Point (CEP)** Event by Event fluctuations of conserved quantities and particle ratios (**K**/ π , ... **Ξ**/ π , **Ω**/ π)
- Onset of chiral symmetry restoration at high ρ_B In-medium properties of hadrons will be changed. (Mass shift and broadening in the medium). $(\rho,\omega,\phi \rightarrow e^+e^-(\mu^+\mu^-)$

CBM Experimental Set-up

Experimental Challenges

10⁵ - 10⁷ Au+Au interactions/sec

Determination of (displaced) vertices ($\sigma \sim 50 \mu m$)

Identification of leptons and hadrons

Fast and radiation hard detectors

High speed data acquisition and high performance computer farm for online event selection

4-D (x,y,z,t) event reconstruction

Di-muon Studies

Muon Detector Set up (MUCH)

- Muon Chamber is a conical shaped set-up with detector coverage is 5.7° to 25° (1.5< η <3.0).
- Unique feature of CBM muon chamber is that hadron absorbers are sliced and detectors are placed in between them.
- Other HEP experiment use a single thick absorber for detection of muons. If a single thick absorber will be used here, then will loose information of low momentum muons which comes from low mass vector mesons.
- Absorbers will be used for hadron absorption.
- 1st absorber is made of Carbon of thickness 60 cm and rest are made of Iron of 20+20+30 cm thickness.
- Gap between the consecutive absorbers is 30 cm and 3 detector chambers (Station) are placed in between the absorbers.
- Gas Electron Multiplier (GEMs) will be used in the first two stations. For the last two stations, we are planning to use Resistive Plate Chambers (RPCs).
- R & D is going on the feasibility study of using RPCs.

Prototype of real GEM module

Muon Detection at CBM

Selection of muon tracks for low mass vector mesons (8 AGeV energy Au+Au)--- Tracks should have, MUCH hits>=11, STS hits>=7, χ 2 much <1.3, χ 2 vertex <2.0

Muon Detection at CBM

Selection of muon tracks for low mass vector mesons---

Tracks should have, MUCH hits>=11, STS hits>=7, χ 2 much <1.3, χ 2 vertex <2.0

Uniqueness and Challenges in Dimuon measurement at CBM

Uniqueness---

- No di-lepton measurement between 2-40 A GeV.
- For the First time CBM aims to measure precisely rarely produced dimuons in the FAIR energy range.

Challenges---

Previous experiments at AGS and SPS has overlap with CBM energy but due to low luminosity and detector limitations they could not measure rare particles.

Experiment	Energy range	Reaction rate (Hz)	
STAR-BES @ RHIC BNL	$\sqrt{s} = 7 - 200 \text{ GeV}$	1 - 800	
NA61 @ SPS CERN	$E_k = 20 - 160 \text{ A GeV}$	80	
MPD @ NICA Dubna	$\sqrt{s} = 4 - 11 \text{ GeV}$	1000	
CBM @ FAIR Darmstadt	$E_k = 2 - 35 \text{ A GeV}$	$10^5 - 10^7$	

- $lue{\bullet}$ CBM will be operated at very high interaction rate (\sim 10 MHz).
- \bullet This is a prerequisite for collecting high statistics data of rarely produced particles (eg. J/ ψ , ρ , ϕ , ϕ)

Simulation for Dimuon measurement at CBM

Tools Used

- CBM Frame -Work CBMROOT (environment)
- Event Generators
 PLUTO -- To generate signal particles (ρ, ω, φ) & decay them into dimuons.
 URQMD − To generate other background events.
- GEANT3 Transport the particles through the CBM set-up

Simulation chain

Simulation Results

[8 AGeV central Au+Au]

Point Density Distribution

Occupancy: Fraction of total no of pads fired per event

(Scaled by 10 MHz interaction rate)

Simulation Results

[8 AGeV central Au+Au]

Raw input cocktail (From pluto)

Invariant mass--

$$P^{2}_{\rho, \omega, \phi} = (P_{\mu^{+}} + P_{\mu^{+}})^{2}$$

P- Four momentum

Reconstructed cocktail (After passing through detector)

Simulation Results

[8 AGeV central Au+Au]

Particle	Eff (%)	S/B
ρ	1.03	0.005
ω	1.01	0.287
φ	1.53	0.005
η	0.56	0.004
ηD	0.23	0.092
ωD	0.37	0.004

21

Y-pT acceptance

Background comes mainly from decays of pions and kaons, and punched through hadrons

Summary

- Dilepton measurements is an integral part of the physics program at CBM. They are believed to be penetrating probes carrying undistorted information of the dense collision zone.
- Till now there is no dilepton data in 2-40 AGeV, so CBM will make pioneering measurements in this energy region.
- A muon detector set up using novel concept of segmented hadron absorber has been designed & realistic simulations via dimuon channel will establish the feasibility of such measurements.

Acknowledgement

Prof. Subhasis Chattopadhyay
Dr. Partha Pratim Bhaduri
All CBM collaborators

Thank You

Back up

Combinatorial Background/Signal in Dilepton Experiments

Reference: hadron cocktail at masses of 0.5-0.6 GeV H.J.Specht

Experiment	Centrality	Lepton fla∨or	B/S as meas. or simul.	B/S rescaled to dN _{ch} /dy=300	
HADES-SIS100	semicentr	e⁺e⁻	20	60	
CERES DR	semicentr	e⁺e⁻	80	100	
CERES SR/TPC	central	e⁺e⁻	110	100	
PHENIX with HBD	central	e⁺e⁻	250	100	
PHENIX w/o HBD	central	e⁺e⁻	1300	600	
STAR	central	e⁺e⁻	400	200	
ALICE Upg ITS	central	e⁺e⁻	1200	200	
CBM-SIS100	central	e⁺e⁻	80	100	
CBM-SIS300	central	e⁺e⁻	100	100	
NA60 (InIn)	semicentr	μ⁺μ⁻	35	80	
NA60-like (20AGeV)	central	μ⁺μ⁻	90	110	
CBM central Au+Au @ 25 A GeV: 5 stations 6 stations (NA60-like acceptance) central Au+Au @ 8 A GeV:		μ⁺μ⁻			
			30 20	30 20	
4 stations			50	50	

H.J.Specht, EC

Much setup (SIS100/300)

TOF information

TOF is used to reduce background ($m^2 >= 0.05 \text{ GeV}^2/C^4$)

02/17/17

Challenges in Dimuon mesurement at CBM

Particle multiplicities times branching ratio for central Au+Au collisions at 25 AGeV as calculated with the HSD transport code

particles	р ⁽⁾ (775МeV)	() (783 MeV)	() (1020 MeV)	(550 MeV)	(550 MeV)	(783 MeV)
Multiplicity (HSD)	9	19	0.12	16	16	19
BR(μμ channel)	4.55*10-5	9*10-5	2.87*10-5	5.6*10-6	3.1*10-4	1.3*10-4
Per event yield	4.09*10-4	1.71*10-3	3.44*10-6	8.96*10-5	4.96*10-3	2.47*10-3