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SOﬂ: CO”lnear EfFeCtIVe Theory [Bauer, Fleming, Pirjol, Stewart]

SCET very powerful for treating multiscale processes in QCD

nk

Light cone coord.: p" = "5-n-p+ ”Z—Hﬁ-p—i-pi‘ =Mn-p,n-p, pL)
n-collinear: p, ~ Q(\%, 1, \)
n-collinear: pn ~ Q(1, A2, \)
(ultra)soft: ps ~ Q(A2, A2, \?%)
hard scale: ) , expansion: A < 1

Allows for a factorized description: Hard, Jet, Beam, Soft radiation



Introduction

@ A large class of observables 7 (pr, threshold, event shapes, etc. )
exhibit singularities in perturbation theory for small 7:

-2 Eas
dr e \m/ o~ nm T 4

SCET: relate observable + to power counting parameter \

@ pr resummation in SCET: o=~ A

@ Threshold in SCET: (1 —2)% ~ A
@ Event shapes in SCET: 7 ~ \?

So that SCET is the EFT that describes the physics of the relevant degrees
of freedom at small 7.



Application of SCET

For F.O. calculation:

@ Only relevant d.o.f. involved = simpler calculation
@ collinear and soft limits at the integrand level

@ expansion by regions in loop integrals for free

For resummation:

@ Prove factorization theorems

do

— =0oH(Q, 1) ® J(Q, 7,8, 1) ®S(s, 1) + p.c.

dr
@ Perform resummation by solving the RGE
1
5 H +77+75=0

dU(res)
dr

For example:

Event shapes/Thrust
Drell-Yan Threshold
N-Jettiness

Jet substructure

Boosted t, W, Z
physics

Jet radius
resummation

Higgs pr resummation
(SCET1)

Jet broadening
(SCET1)

@ Small-x resummation

= H(Q, pr)Un (Q, i, 118) J(Q, 7, p1g )®Us (117, 5 )®S (15 ) (Glauber)



From SM to SCET

Lsyr — Lscer = Lyard + Layn

i L describes the
Liara describes the dyn

) evolution of the
hard scattering/the

partonic interaction strongly interacting

final /initial states

e.g. how to go from gg e.g. how to go from

to H + 2 partons. 2 partons to 2 jets/

how the jets evolve

Note: it can come from

EFT of pure QCD
non-QCD interactions

d
ﬁ ~ooH(Q,p) @ J(Q, 7,5, 1) ®S(s, )



Hard scattering

@ Lpard is made by hard scattering operators O; made by incom-
ing/outgoing fields.

e C; are Wilson coefficients: computed via matching to SM (not
only QCD), they encode physics of hard modes at scale Q.
Analogue to 4 Fermi theory.



Hard scattering

e Fields/Lagrangians have a definite power counting in \.

Operator BZZ-J_ Xn: | P | Yus | Blis | Ols
Power Counting A A A AN

therefore, the Lagrangians can be expanded in A

LsceT = Lhard + Layn = Z Efgrd + Z £
i>0 i>0
LUH5) suppressed by A\F w.r.t. £
£ is called Leading Power Lagrangian
LD is Subleading Power Lagrangian
£3) is Sub-Subleading Power Lagrangian

etc ...

Note: Often no O(\) at o level, so Sub-Subleading Power (which is A% suppressed) is

called Next to Leading Power (first non vanishing).



Hard scattering in SCET: some definitions

Lhard can be expanded:
@ in powers of power counting parameter A\r Lyard = D ; ‘Chard

@ on the operator basis: L’ﬁard > C

A list of independent hard scattering operators {Oj(-i)} for a given
process is called a basis of hard scattering operators.



Hard scattering: Operator basis vs Wilson coefficients

Lo =2 €0}

J

@ Wilson coefficients C’;i) depend on process (e.g. gg — H) and

power counting

@ Operator basis Oj(-i) depends on spin of non-QCD part and power

counting == more general (same basis for all gg — spin-0 at O(A%))
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Note that, by definition, hard scattering operator basis is: at all orders in ag, finite by

power counting and fixed order in EW (typically LO)



Operator basis

@ Include all operators with smallest power of A, compatible with
symmetries:

@ Collinear and u.s. gauge invariance (encoded in building blocks
Bw‘:algﬁsﬂ(n:wus)

@ Spin of the final state (use helicity building blocks B, J. )

noyYnn

@ Reparametrization Invariance (physics doesn’t change if | change n#* def.
by O(A?))

@ Lot of symmetries = lot of constraints

For processes with only 2 collinear directions (n, 1) at leading power,
operator basis is trivial: e.g. for gg - H

\ N\
/ /
| \
I I

b b
gngn W= —2wiwad? B(Jl_ﬁ,wz ’ Bj_n,unH



Operator basis at subleading powers

Order | Category Operators (equation number) afj(*z#o
0)ab a a
O | Hgg O, = Bir,Bir H v
_ laa a a
O | Hadg Ol n) = Bis, Jun 3 H v
2 ~A (2)apys  _ jaB 50
o) | HaaQq Oa10000) = @nn J@nre H
(2)apys  _ qap g8 H
qQ2(A13A1) T T (gQ)nA1 T(QDN Ay
(2)aBys _ 7aB 56
OqQﬂ((A;;b—Aé) = Jgnans J@uma-a H
— 2)aba _ Ra b ap
Hqqgg 031,\1>\2()\3) = B’n)xlBﬁ)\z I A3 H v

OGRoen =B\ By, Jo8 H

B2Xida(As) — PadiPax: Inag

Hgggg Oif,)&bffﬂm = SBzAlBZ)\?B%MB%MH
Og)ﬁffﬂm = SBZMB%,\ZB%ASB;}WH v
P Ogi{f&)[xp] = Biy, {5, (PP Y H v
ng)saxii\y\g[xp] = SBZM Bgm [PiPB%/\g] H v

Ultrasoft O)(fn)gifo:(kl) =Bl (m)0 JSSM H

egz;y;i(is),\l;(,\z) = {Dustmn, T} H
OEZJEIfZEM,AQAS = st(n)xl BZ A2 B a2 v
Oézzléus)xl:xg,\s - [auS(n)/\l Bn%z} Bax, H v




Matching



Matching: a straightforward example

OPBl = '(rILJ_ Jw1 [P BnJ_ Jwo :I :’LJ_ng

2) b c
O(PBQ [P‘ : nJ_ wg] BnJ_,wl . BLﬁ,ng
@ Assign kinematics with overlap to the operator:

meoo it y Atk
pz—w27+p +p22 y Py~ W3 — P tP3
e Expand full theory! diagrams at O()\2):

p2,b p3,cC p2,b
b3, ¢

o(2)
w3 w2

=4g <2 +—+ ) (€21 -€31p1 - €11 — €11 - €21D1 - €31+
w2 w3

— €11 " €31P1 Gu) .

1QCD with pointlike gluon fusion Higgs production



Matching: a straightforward example

@ Extract Wilson Coefficient of the operators

2 1 . abe c
07(91)31 == (2> dig (2 + wiz + 3) 77131 = f*Ba, w1 [PlBgl,wz'] ol ws s

2 .
07(91252 = dig ( +— "‘ wg) 7:52 = [P By, ws) B, w " BlawH
@ Matching onto Helicity basis

(2) o . rabe WS
Oppy i) = 49if (2 + ;2

(2) _ - rabe a b c
OPBfffHJ = 49if (2 T w2 OJB) Br o, Briv s [PIBTL wz] ,

=) B, Bl (P8R .

(2) _ - rabc w3 w2 a b + 12c
OPB++—[+] = —2gif <2 + 072 + o.)3,> Byt oy Brws [P Bry W2] H,

| H.

(2) _ w2
O oo = —QQZfabC <2 + = W3> Bfk’wl 627 s [’P BS s

)



Matching: Feynman Rule

In this way we get the Feynman rule in the EFT:

p2,b,v

w3
) ot - sttt -

+ pLS (wan”gh? — wan’g"” + p'in"nP)

Gauge invariant collinear gluon building block:

a

n- A2 T
b, =g (AT - T2 o)



Matching: a less straightforward example

e EFT has non localities only at the hard scale Q ~ w ~ \°
@ Some full theory diagrams have non localities also at the soft
scale )\2 (eg. (p2 +p3)? ~ phws + phws +pf_ ~ A2)

P2, d

4ig? o<t ¢ | 9(ws + ws)
= 5 PL-€11p1 -€21€31 " €41+
w4 (p2 + p3)

hard non locality | soft non locality

O(A2)

—(2w3 +wa)erl -€g1 €21 - €31

@ Need to cancel with EFT contributions (SCET diagrams with
same final states) e.g.

p2,b, v

X collinear gluon splitting in SCET




Matching: cancellation of soft non localities

@ Cancellation of soft non localities gives a strong cross check on
matching of operators (both 3¢g and 4g operators involved)

2) (2)
Ors Ors non-loc.

abefecd (UJQ+LU3+(U4)2

P2 +p3)?  (ws + wa)ws

+[3<—>4,b<—>c]> .

=8ig’p1 - €11PL - €21 €31 €4l <(

@ Resulting Wilson Coefficient is free of soft non localities

w3+ wd +wd+ WiWEWy
C’g) = 167ay <3 + ( J i ¢ d

wj + wi) (w; + we) (Wi, + we)



What is subleading power good for?



Leading Power

@ Observables can be organized in an expansion in 7.

da_
dr

de©®

de@  doc@

+

dr

dr dr T

power corrections

@ Leading power well understood for a wide variety of observables.

do(©®

dr _Z

n=0

Qs

(Z)

™

=HOJO O 5O 4 (9(

1
=~ % N3LL' results
20F—— T —————— q
A i —_ f\\yx,l'l without hlén’n(g‘\c)m
5 [/ . N0 Q) (0113
I - = = noQi, BS profile
| (o= 1172)
i
10 I 4
; ,
[ e peiem Q=myz
sF ® ALEPH 4
| oo
| e
T ® sip
ol , , , ,
0.00 0.02 0.04 0.06

[Sfewart, et al]
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[Zhu, et al]



Subleading Power

@ Subleading powers much less well understood.
@ Are there factorization theorems at each power?

do(™
dr

_ ZH](nHj) ® J](an) ® S]('nSj)
J

@ What is the degree of universality?

e Start by looking at Next-to-Leading Power (NLP):

@ & n e
(G e

m=0




Applications

@ Goal: Understand all orders structure of NLP logs. Derive RG,
etc.

o Fixed order is first step in understanding this.

o Already at fixed order NLP logs have interesting applications.



Application to N-jettiness Subtractions

@ NNLO calculations require cancellation of real /virtual poles.
@ Use a physical resolution variable to slice phase space.

@ Recently a general method allowing for jets in final state, based
on N-jettiness (see also Andrea Isgro’s talk)

[Boughezal, Focke, Petriello, Liu]
[Gaunt, Stahlhofen, Tackmann, Walsh]

Tcut

J(X):/d N dTN / T dTN / T dT\
0 Tcut




N-jettiness Subtractions

d
drn

2 —HB,®B,®5S®J,®---

Tcut
do(X)
X d d
o(X) = / TN dTN / T dTN / T dTn
0 Tﬁ}'t
Tcut (X)
/ a7y 171%) [
dTn "
0

Compute using factorization
in soft/collinear limits:

® JN-1

Additional jet resolved.
Use NLO subtractions.



A Subleading Operator Basis and Matching for gg — H

Power Corrections

@ Current subtractions use leading power result in singular region.

@ Power corrections are dropped = small values of 7" nec-

essary.
n=00 2n—1
do _ Z g\ " Z C(O long
dr s i T
n=0 n=0 +
n=00 ) 2n—1
+ (i> E cn2) log™ 7
s
n=0 n=0
n=00 QT 2n—1
s (2) m
+ (W) g Co, Tlog™ T
n=0 n=0
+
@ Use of a physical resolution variable = power corrections
analy‘“ca”y tracta ble [Gaunt, Stahlhofen, Tackmann, Walsh], see also Andrea’s Talk

[Boughezal, Petriello, Liu, et al.]



N-jettiness Subtractions

10— 107! gy
oo asﬁ g2 4 pp — Z (13 TeV) =
’; [—=- a3l +ay L ] — NNLO ]
¢ 0.5 full nons. ] 1072 a9
Y [ —— full—asL® 4 r 3
4 [ === full— b qb ‘ ;
< 0.0F==—== — e ) A
3 r ] = asL* 13
b [ e ] S o=’ M
~ [ R ] 5 F -—-asL*+al'L? V]
g -o0.5F - B = 10 —— full nons. =
z [ pp — Z (13 TeV) ] Z E full - ayL* 3
[ 99 NNLO N E = full—as L —al'L? ]
) S v Y BN Py 1ol vl AL
107° 107 107% 1072 10°° 107 10°% 102 107!
Teut = Ten/Q Teut = Teut/Q

[lan Moult, Lorena Rothen, lain W. Stewart, Frank J. Tackmann, and
Hua Xing Zhul- arXiv:1612.00450v1]



@ Understand factorization beyond leading power

@ Systematic study of subleading Lagrangian insertions
(Subleading Power Radiative Functions)

@ Combine subleading hard scattering operator and Radiative
Functions

o Extend it to SCETy;

@ Apply universal subleading SCET pieces to many observables to
“automatize” NNLO FO calculations

@ Perform resummation of subleading logarithms (next to leading
power, next to eikonal)



@ Understand factorization beyond leading power

@ Systematic study of subleading Lagrangian insertions
(Subleading Power Radiative Functions)

@ Combine subleading hard scattering operator and Radiative
Functions

o Extend it to SCETy;

@ Apply universal subleading SCET pieces to many observables to
“automatize” NNLO FO calculations

@ Perform resummation of subleading logarithms (next to leading
power, next to eikonal)

Thank you!



Backup slides



Helicity building blocks: definition

By = —egu(ni,ng) Bl .
R == & _ & LF 7
Xi+ = 2 Xni,fwi ’ Xit+ = Xni,fwi 2 .
s M| f—
i by = PR gy o)
V2(kp) V2[kp]

@ Helicity currents where the quarks are in opposite collinear sectors,

2 el(n,n) _,
h=d41: JP, =5 —— 58 B
= wn wr (T [ng) nE HARE
2

_ ) _ _
h=0: JW =2 go 8 gt —a B
nn0 /rn wn, [nﬁ] Xn+Xn— ( )nnO /rn wn <nﬁ> Xn—Xn+
@ as well as where the quarks are in the same collinear sector,

1 58 1
Ji

77@ . ﬂ = —
2m><2+%zx1+’ 0 2\/@)(17% Xl—’

a 2 (i) 4
h==+1: Jifx\/> U X Yulh Xy -
wWgWx ((n; F |nt))

h=0: J3 =




Helicity building blocks: power counting

Field: T I T

Power counting: | A 2 A2 A2 A2 A2 A

Field: Brsiye Bus@yo | stz Ousiyo Ous(iyo
Power counting: A2 2 2 A2 A2




