Evaluation of Galactic Cosmic Rays Models Using AMS2 and PAMELA Measurements

Francis F. Badavi¹ Christopher J. Mertens² Tony C. Slaba²

¹Old Dominion University, Norfolk, VA, USA ²NASA Langley Research Center, Hampton, VA, USA

New Opportunities in the AMS2 Era #2, Arlington Virginia April 24 - 26, 2017

Motivation and Outline

Motivation:

 Use AMS2/PAMELA Galactic Cosmic Rays (GCR) proton measurements, to highlight differences among 3 existing GCR models at < 3 GeV, and > 3 GeV ranges

Outline:

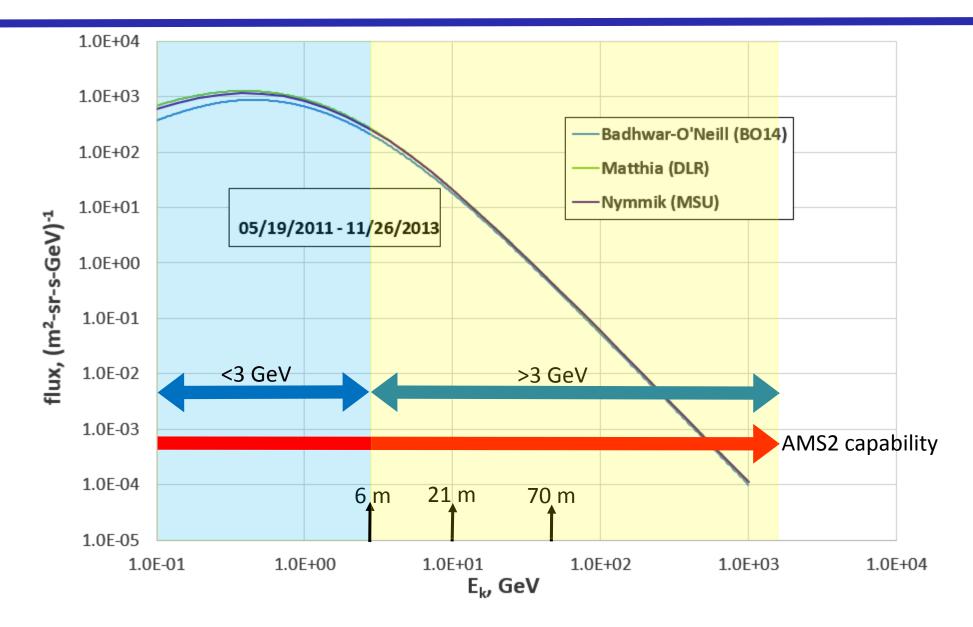
- Brief description of the **BO/MSU/DLR** GCR models
- Review of historical GCR measurements
- Explain AMS2/PAMELA proton measurements
- Correlate AMS2/PAMELA measurements with the BO/MSU/DLR models
- Highlight regions of exposure importance to astronauts
- Summary/conclusion

Brief Introduction of the BO/MSU/DLR GCR Models

$$BO^{\%} \longrightarrow \begin{cases} \frac{1}{r^{2}} \frac{\partial}{\partial r} \left[r^{2} V_{s} \Phi_{i}(E,t) \right] - \frac{1}{3} \left[\frac{1}{r^{2}} \frac{\partial}{\partial r} (r^{2} V_{s}) \right] \left[\frac{\partial}{\partial E} (\frac{E+2E_{0}}{E+E_{0}}) E \Phi_{i}(E,t) \right] - \frac{1}{r^{2}} \frac{\partial}{\partial r} \left[r^{2} \kappa(r,E,t) \frac{\partial}{\partial r} \Phi_{i}(E,t) \right] = 0 \\ \kappa(r,E,t) = \frac{\kappa_{0} \beta R(E)}{V_{s} \phi(t)} \left[1 + \left(\frac{r}{r_{0}} \right)^{2} \right] \end{cases}$$

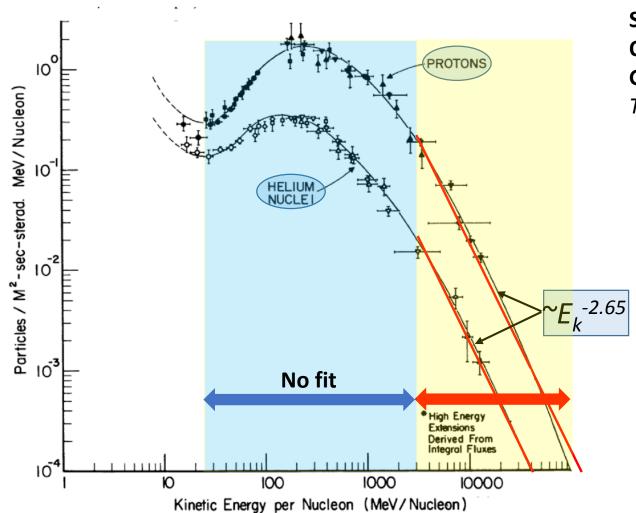
$$MSU^{\#} \longrightarrow \Phi_{i}(R,t) = \frac{C_{i} \beta^{\alpha_{i}}}{R^{\gamma_{i}}} \left[\frac{R}{R+R_{0}(R,t)} \right]^{\Delta_{i}(R,t)} \xrightarrow{\text{Transformation } \Phi_{i}(R,t) \to \Phi_{i}(E,t)} \\ DLR^{*} \longrightarrow \Phi_{i}(R,t) = \frac{C_{i} \beta^{\alpha_{i}}}{R^{\gamma_{i}}} \left[\frac{R}{R+R_{0}(R,t)} \right]^{\Delta_{i}(R,t)} \xrightarrow{\Delta_{i}(R,t)} \xrightarrow{\Delta_{i}(R,t)} \Phi_{i}(E,t) = 0 \\ \kappa(r,E,t) = \frac{C_{i} \beta^{\alpha_{i}}}{R^{\gamma_{i}}} \left[\frac{R}{R+R_{0}(R,t)} \right]^{\Delta_{i}(R,t)} \xrightarrow{\Delta_{i}(R,t)} \frac{\Delta_{i}(R,t)}{\Phi_{oulu}} + 638.7 \end{cases}$$

All 3 models are valid at 1 AU outside the Earth geomagnetic field

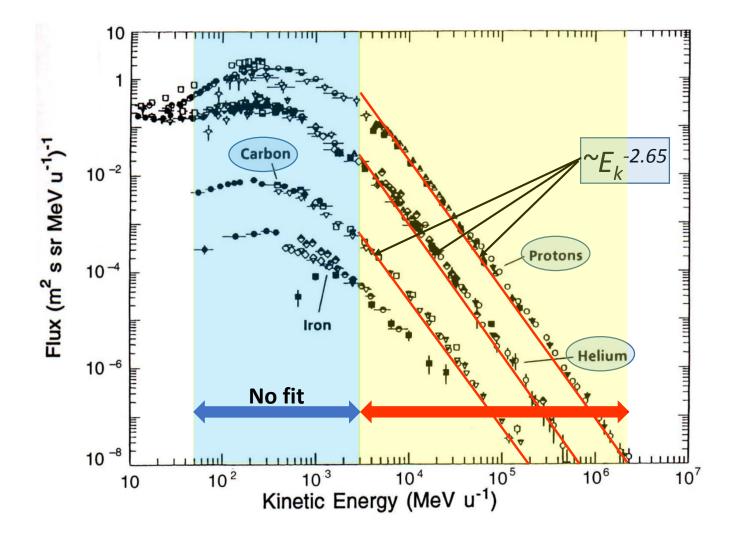

[%]Badhwar, G.D., O'Neill, P.M. (1994), Long term modulation of galactic cosmic radiation and its model for space exploration, *Adv. in Space Res.*, v. 14, pp. 749-757

[#]Nymmik, R., et al. (1994), An analytical model, describing dynamics of galactic cosmic ray heavy particles, *Adv. in Space Res.*, v. 14, pp. 759-763

*Matthia, D., et al. (2013), A ready-to-use galactic cosmic ray model, *Adv. in Space Res.*, v. 51, pp. 329–338


BO/MSU/DLR GCR Proton Spectra at Free Space

Historical GCR measurements - I



SOLAR MODULATION AND ENERGY DENSITY OF GALACTIC COSMIC RAYS G. Gloeckler and J.R. Jokipii The astrophysical journal, Vol. 148, April 1967

Historical GCR Measurements - II

ELEMENTAL AND ISOTOPIC COMPOSITION OF THE GALACTIC COSMIC RAYS

J. A. Simpson

Ann. Rev. Nucl. Part. Sci. 1983.33:323-81, 1983

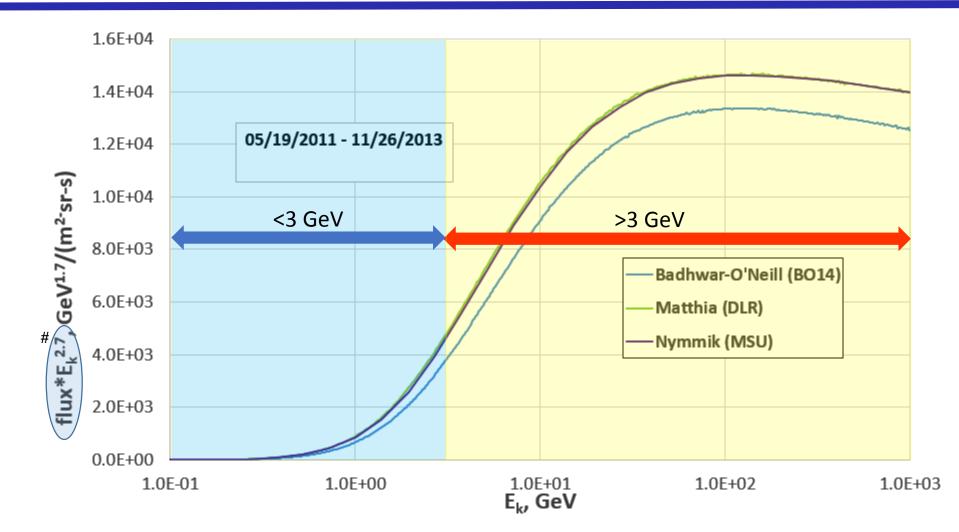
P.R.L. Paper on AMS2/PAMELA (May 2015)

PRL 114, 171103 (2015) PHYSICA

PHYSICAL REVIEW LETTERS

week ending 1 MAY 2015

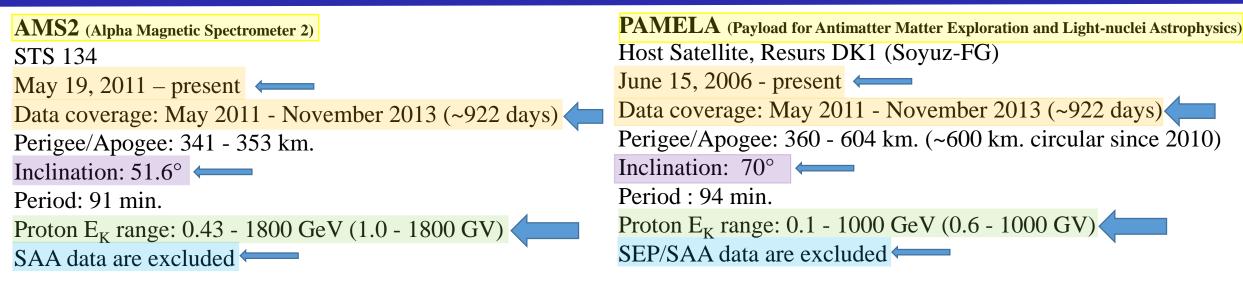
Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station

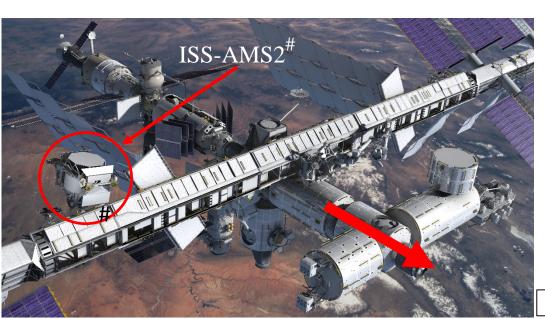

Ś

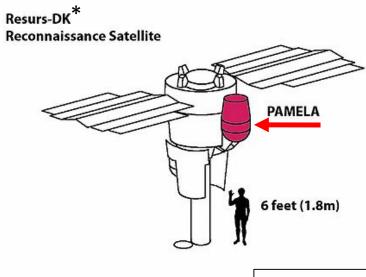
M. Aguilar,²⁶ D. Aisa,^{33,34} B. Alpat,³³ A. Alvino,³³ G. Ambrosi,³³ K. Andeen,²² L. Arruda,²⁴ N. Attig,²¹ P. Azzarello,^{33,16} A. Bachlechner,¹ F. Barao,²⁴ A. Barrau,¹⁷ L. Barrin,¹⁵ A. Bartoloni,³⁸ L. Basara,^{3,37} M. Battarbee,⁴⁵ R. Battiston,^{37,a} J. Bazo,³³ U. Becker,⁹ M. Behlmann,⁹ B. Beischer,¹ J. Berdugo,²⁶ B. Bertucci,^{33,34} G. Bigongiari,^{35,36} V. Bindi,¹⁹ S. Bizzaglia,³³ M. Bizzarri,^{33,34} G. Boella,^{28,29} W. de Boer,²² K. Bollweg,²⁰ V. Bonnivard,¹⁷ B. Borgia,^{38,39} S. Borsini,³³ M. J. Boschini,²⁸ M. Bourquin,¹⁶ J. Burger,⁹ F. Cadoux,¹⁶ X. D. Cai,⁹ M. Capell,⁹ S. Caroff,³ J. Casaus,²⁶ V. Cascioli,³³ G. Castellini,¹⁴ I. Cernuda,²⁶ D. Cerreta,^{33,34} F. Cervelli,³⁵ M. J. Chae,⁴¹ Y. H. Chang,¹⁰ A. I. Chen,⁹ H. Chen,⁹ G. M. Cheng,⁶ H. S. Chen,⁶ L. Cheng,⁴² H. Y. Chou,¹⁰ E. Choumilov,⁹ V. Choutko,⁹ C. H. Chung,¹ C. Clark,²⁰ R. Clavero,²³ G. Coignet,³ C. Consolandi,¹⁹ A. Contin,^{7,8} C. Corti,¹⁹ E. Cortina Gil,^{16,b} B. Coste,^{37,15} W. Creus,¹⁰ M. Crispoltoni,^{33,34} Z. Cui,⁴² Y. M. Dai,⁵ C. Delgado,²⁶ S. Della Torre,²⁸ M. B. Demirköz,² L. Derome,¹⁷ S. Di Falco,³⁵ L. Di Masso,^{33,34} F. Dimiccoli,³⁷ C. Díaz,²⁶ P. von Doetinchem,¹⁹ F. Donnini,^{33,34} W. J. Du,⁴² M. Duranti,^{33,34} D. D'Urso,³³ A. Eline,⁹ F. J. Eppling,⁹ T. Eronen,⁴⁵ Y. Y. Fan,^{44,c} L. Farnesini,³³ J. Feng,^{3,d} E. Fiandrini,^{33,34} A. Fiasson,³ E. Finch,³² P. Fisher,⁹ Y. Galaktionov,⁹ G. Gallucci,³⁵ B. García,²⁶ R. García-López,²³ C. Gargiulo,¹⁵ H. Gast,¹ I. Gebauer,²² M. Gervasi,^{28,29} A. Ghelfi,¹⁷ W. Gillard,¹⁰ F. Giovacchini,²⁶ P. Goglov,⁹ J. Gong,³¹ C. Goy,³ V. Grabski,²⁷ D. Grandi,²⁸ M. Graziani,^{33,34} C. Guandalini,^{7,8} I. Guerri,^{35,36} K. H. Guo,¹⁸ D. Haas,^{16,e} M. Habiby,¹⁶ S. Haino,^{10,44} K. C. Han,²⁵ Z. H. He,¹⁸ M. Heil,⁹ J. Hoffman,¹⁰ T. H. Hsieh,⁹ Z. C. Huang,¹⁸ C. Huh,¹³ M. Incagli,³⁵ M. Ionica,^{33,34} W. Y. Jang,¹³ H. Jinchi,²⁵ K. Kanishev,^{37,15} G. N. Kim,¹³ K. S. Kim,¹³ Th. Kirn,¹ R. Kossakowski,³ O. Kounina,⁹ A. Kounine,⁹ V. Koutsenko,⁹ M. S. Krafczyk,⁹ G. La Vacca,²⁸ E. Laudi,^{33,34,f} G. Laurenti,^{7,8} I. Lazzizzera,³⁷ A. Lebedev,⁹ H. T. Lee,⁴⁴ S. C. Lee,⁴⁴ C. Leluc,¹⁶ G. Levi,^{7,8} H. L. Li,^{44,g} J. Q. Li,³¹ Q. Li,³¹ Q. Li,^{9,h} T. X. Li,¹⁸ W. Li,⁴ Y. Li,^{16,d} Z. H. Li,⁶ Z. Y. Li,^{44,d} S. Lim,¹³ C. H. Lin,⁴⁴ P. Lipari,³⁸ T. Lippert,²¹ D. Liu,⁴⁴ H. Liu,³¹ M. Lolli,^{7,8} T. Lomtadze,³⁵ M. J. Lu,^{37,i} S. Q. Lu,^{44,d} Y. S. Lu,⁶ K. Luebelsmeyer,¹ J. Z. Luo,³¹ S. S. Lv,¹⁸ R. Majka,³² C. Mañá,²⁶ J. Marín,²⁶ T. Martin,²⁰ G. Martínez,²⁶ N. Masi,^{7,8} D. Maurin,¹⁷ A. Menchaca-Rocha,²⁷ Q. Meng,³¹ D. C. Mo,¹⁸ L. Morescalchi,^{35,j} P. Mott,²⁰ M. Müller,¹ J. Q. Ni,¹⁸ N. Nikonov,²² F. Nozzoli,³³ P. Nunes,²⁴ A. Obermeier,¹ A. Oliva,²⁶ M. Orcinha,²⁴ F. Palmonari,^{7,8} C. Palomares,²⁶ M. Paniccia,¹⁶ A. Papi,³³ M. Pauluzzi,^{33,34} E. Pedreschi,³⁵ S. Pensotti,^{28,29} R. Pereira,¹⁹ N. Picot-Clemente,¹² F. Pilo,³⁵ A. Piluso,^{33,34} C. Pizzolotto,³³ V. Plyaskin,⁹ M. Pohl,¹⁶ V. Poireau,³ E. Postaci,² A. Putze,^{3,k} L. Quadrani,^{7,8} X. M. Qi,¹⁸ X. Qin,^{33,g} Z. Y. Qu,^{44,1} T. Räihä,¹ P. G. Rancoita,²⁸ D. Rapin,¹⁶ J. S. Ricol,¹⁷ I. Rodríguez,²⁶ S. Rosier-Lees,³ A. Rozhkov,⁹ D. Rozza,²⁸ R. Sagdeev,¹¹ J. Sandweiss,³² P. Saouter,¹⁶ C. Sbarra,^{7,8} S. Schael,¹ S. M. Schmidt,²¹ A. Schulz von Dratzig,¹ G. Schwering,¹ G. Scolieri,³³ E. S. Seo,¹² B. S. Shan,⁴ Y. H. Shan,⁴ J. Y. Shi,³¹ X. Y. Shi,^{9,m} Y. M. Shi,⁴³ T. Siedenburg,¹ D. Son,¹³ F. Spada,³⁸ F. Spinella,³⁵ W. Sun,⁹ W. H. Sun,^{9,n} M. Tacconi,^{28,29,15} C. P. Tang,¹⁸ X. W. Tang,⁶ Z. C. Tang,⁶ L. Tao,³ D. Tescaro,²³ Samuel C. C. Ting,⁹ S. M. Ting,⁹ N. Tomassetti,¹⁷ J. Torsti,⁴⁵ C. Türkoğlu,² T. Urban,²⁰ V. Vagelli,²² E. Valente,^{38,39} C. Vannini,³⁵ E. Valtonen,⁴ S. Vaurynovich,⁹ M. Vecchi,⁴⁰ M. Velasco,²⁶ J. P. Vialle,³ V. Vitale,³³ S. Vitillo,¹⁶ L. Q. Wang,⁴² N. H. Wang,⁴² Q. L. Wang,⁵ R. S. Wang,⁴³ X. Wang,⁹ Z. X. Wang,¹⁸ Z. L. Weng,⁹ K. Whitman,¹⁹ J. Wienkenhöver,¹ H. Wu,³¹ X. Wu,¹⁶ X. Xia,^{26,g} M. Xie,^{9,h} S. Xie,⁴³ R. Q. Xiong,³¹ G. M. Xin,⁴² N. S. Xu,¹⁸ W. Xu,^{6,9} Q. Yan,⁹ J. Yang,⁴¹ M. Yang,⁶ Q. H. Ye,⁴³ H. Yi,³¹ Y. J. Yu,⁵ Z. Q. Yu,⁶ S. Zeissler,²² J. H. Zhang,³¹ M. T. Zhang,¹⁸ X. B. Zhang,¹⁸ Z. Zhang,¹⁸ Z. M. Zheng,⁴ H. L. Zhuang,⁶ V. Zhukov,¹ A. Zichichi,^{7,8} N. Zimmermann,¹ P. Zuccon,⁹ and C. Zurbach³⁰

(0.43 GeV - 1.80 TeV)

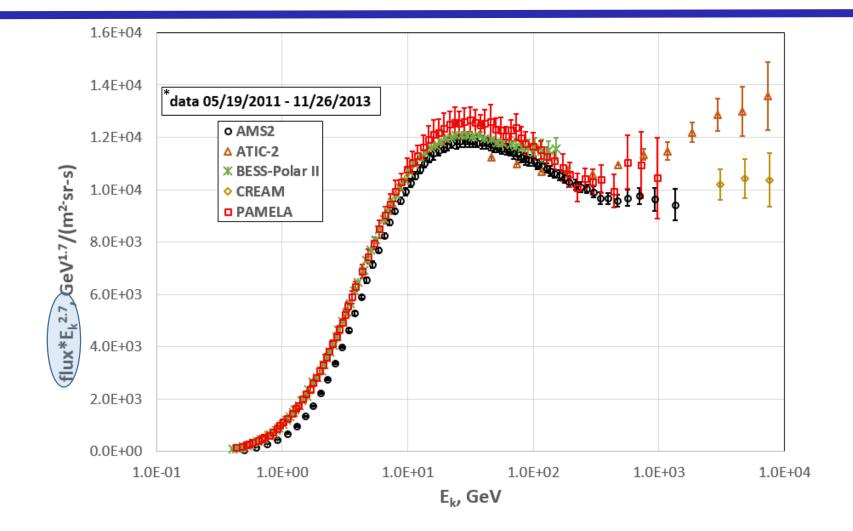
Modified BO/MSU/DLR Proton Spectra






[#]Aguilar, M., et al. (2015), Precision measurement of the proton flux in primary cosmic rays from rigidity of 1 GV to 1.8 TV with the alpha magnetic spectrometer on the international space station, *Phys. Rev. Letters*, *114-171103*, May 2015

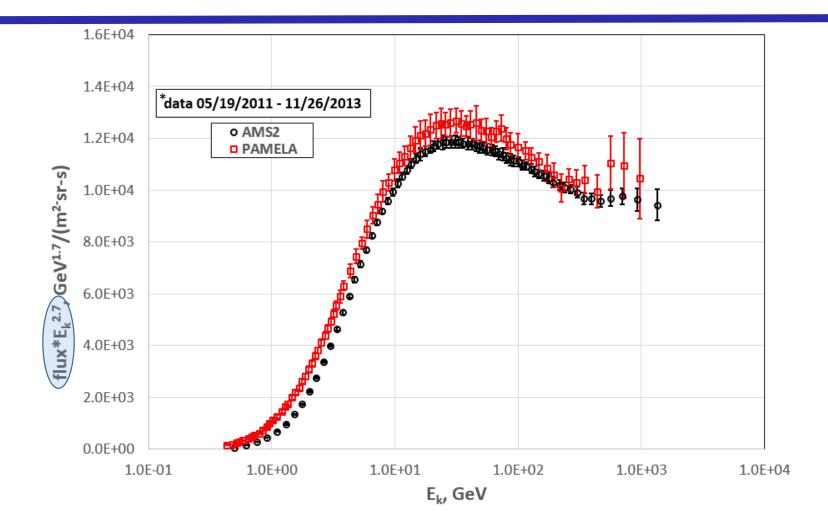
AMS2/PAMELA Specifications



#STS-134/ULF6-AMS, https://ams.nasa.gov, May, 2011

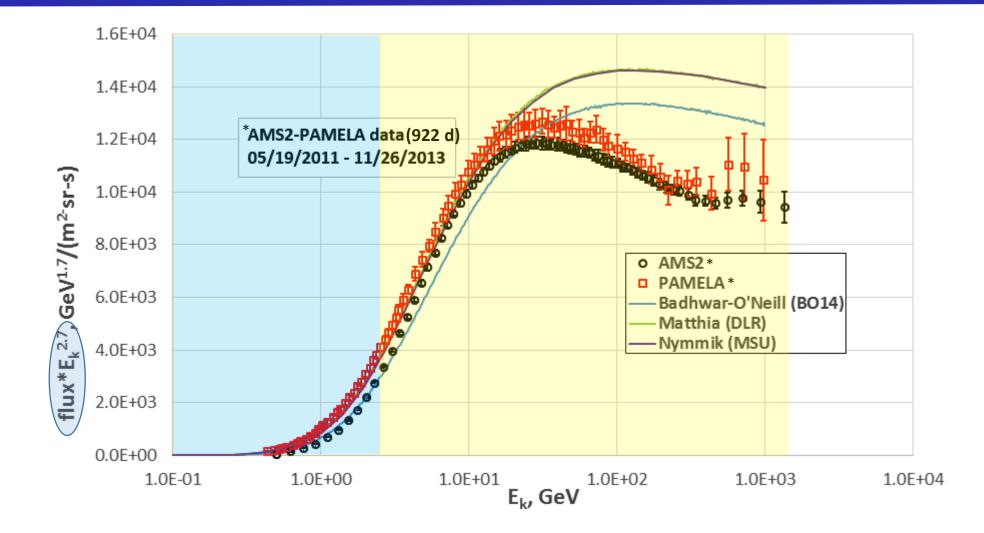
*Adriani, O., et al. (2011), PAMELA measurements of cosmic-ray proton and helium spectra, *Science*, *332*, p: 69-72, Apr. 2011

Modified AMS2/PAMELA/ATIC-2/BESS-Polar II/CREAM Proton Spectra



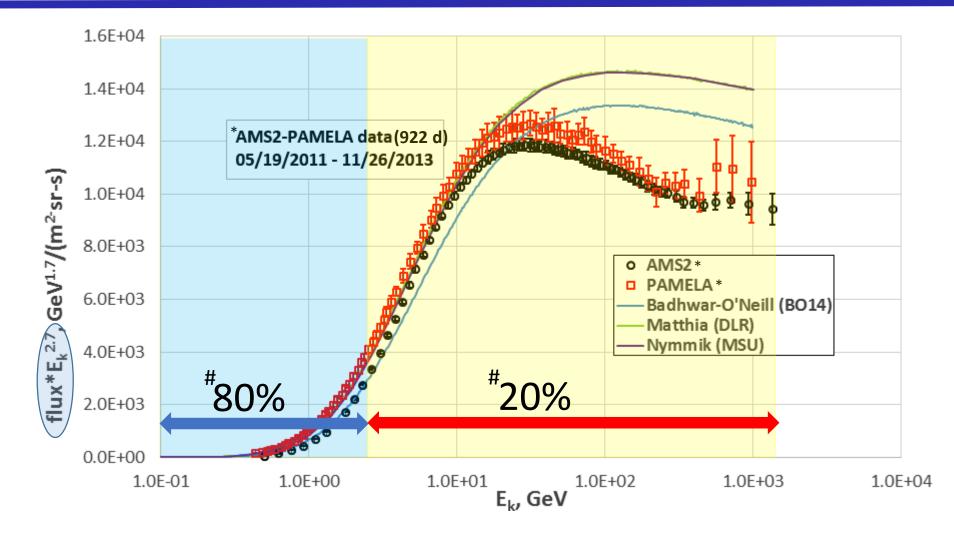
*Aguilar, M., et al. (2015), Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station, *Physical Review Letters*, *114*, 171,103

Modified AMS2/PAMELA Proton Spectra



*Aguilar, M., et al. (2015), Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station, *Physical Review Letters*, *114*, 171,103

AMS2/PAMELA Proton Spectra Measurement vs. GCR Models



*Aguilar, M., et al. (2015), Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station, *Physical Review Letters*, *114*, 171,103

Significance of GCR Radiation Exposure (E) in Each Energy Region

*Aguilar, M., et al. (2015), Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station, *Physical Review Letters*, *114*, 171,103

[#]Slaba, T. C., Blattnig, S. R. (2014), GCR environmental models I: Sensitivity analysis for GCR environments, AGU pubs., *Space Weather*, *12*, 217-224 #70-80% of the astronaut effective dose resulting from GCR protons comes from protons with energy < 3 GeV

Summary/Conclusion

- Briefly reviewed 3 GCR models and discussed the differences among them
- Compared GCR model predictions to published AMS2/PAMELA proton measurements
- Showed that the **BO** model is closest to the AMS2 measurements in the region of greatest importance for astronaut exposure (< 3GeV), while the **MSU/DLR** models are closest to the PAMELA measurements in this region
- Showed that the **BO** model under-predicts the AMS2/PAMELA measurements at higher energies