Approved for Public Release 17-MDA-9135 (12 April 17)

Probabilistic Modeling of the Space Radiation Environment

Solar Energetic Particles (SEP), Solar Modulation and Space Radiation: New Opportunities in the AMS-02 ERA #2

Authors: Zachary Robinson, James H. Adams Jr., and Jonathan Fisher

Contacting Author: Zachary Robinson (zachary@5thgait.com)

April 24-26, 2017

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Approved for Public Release 17-MDA-9135 (12 April 17)

Overview

 Why we need models for the space radiation environment

• Probabilistic Modeling Methodology

- Two new models:
 - -Episode-Integrated Fluence Model
 - –Peak Flux model

Fifth Gait Technologies, The Next Step

Why we need these models

- To determine the environment the mission will encounter
 - –Reduce costly-overdesign

• Give the mission the best chance to succeed -Protect instruments and humans from radiation

The Probabilistic Method The probability that no event with a flux $\geq \phi$ in *T* years:

$$F_T(M) = \sum_n \frac{(\mu T)^n}{n!} \exp(-\mu T) \left[P(M)\right]^n$$

Where $M = \log(\phi)$

This can be simplified to :

$$F_T(M) = exp\{-\mu T[1 - P(M)]\}$$

Approved for Public Release 17-MDA-9135 (12 April 17)

The Probabilistic Method

$$F_T(M) = exp\{-\mu T[1 - P(M)]\}$$

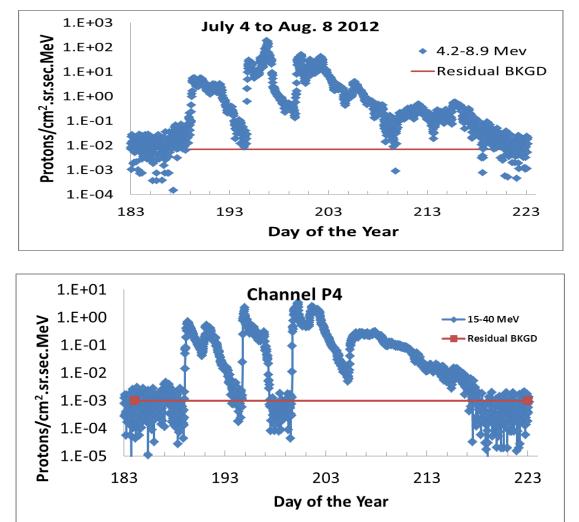
- No assumption has be made to elements or energy range.
- Need to find the cumulative distributions and episodes per year.

Fifth Gait Technologies, The Next Step

Two Models

- Both models:
 - Use a database where periods of elevated particle flux are identified by eye
 - Allow the user to chose mission start date and duration.
 - Confidence level that the user wishes to attain with their design.
 - Episode-Integrated Fluence Model (Robinson, 2015)
 - Missions ranging from a few weeks to several years
 - Peak Flux Model
 - Missions ranging from 10's of minutes to several years

Data Base of SEP Episodes


- Episode-Integrated
 Fluence Proton Data
 Base
 - GME on IMP-8 and EPS on GOES
 - Normalized using isotropic periods of flux and Rodriguez et al. [2014]
 - Redistributed the GOES fluence in GME channels

- Peak Flux Data Bases
 - Proton
 - o EPS on GOES
 - Normalized using periods of isotropic flux and Rodriguez et al. [2014]
 - Helium
 - Solar Energetic Particle
 Environment Modeling
 (SEPEM) system [Crosby et al., 2015]

Episode Identification

Images from Robinson, 2015

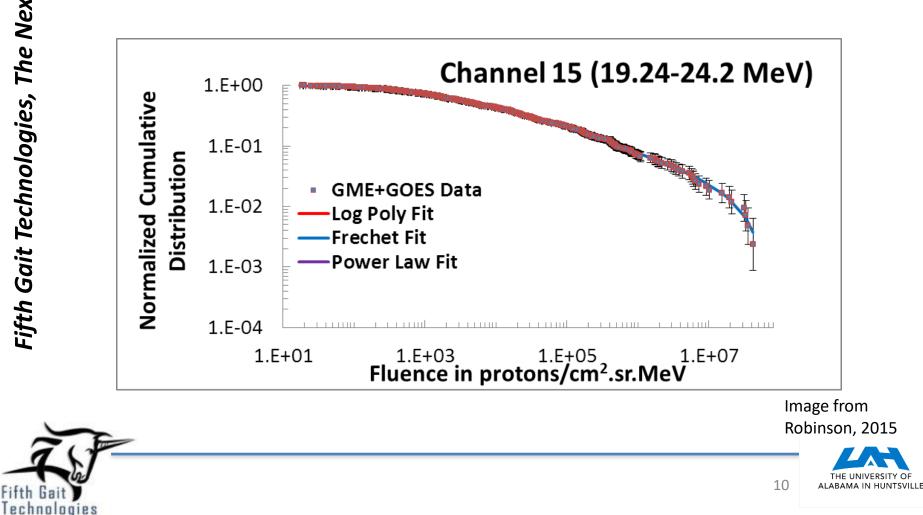
Fifth Gait Technologies

Fifth Gait Technologies, The Next Step

Cumulative Distributions

- Each channel was graphed as 1 P(M)
- Used three equations to fit each distribution
 –Power law
 - -Log polynomial
 - –Frechet distribution (following work of Xapsos et al. 1998)

$$N = N_{tot} (\frac{\phi^{-b} - \phi_{max}^{-b}}{\phi_{min}^{-b} - \phi_{max}^{-b}})$$



Fifth Gait Technologies, The Next Step

Approved for Public Release 17-MDA-9135 (12 April 17)

Cumulative Distributions

Three different methods were used:

- Actual number of episodes per year (1974-2013)
- Sunspot Proxy (1953-1974, 2013-2019)
- 11-year solar cycle fit (2019 2052)

Sunspot Proxy

- Hathaway et al. (1994) predicted sunspot numbers
- Sunspot numbers compared to episodes per year
 - -Exponential distribution with dead time correction factor (Robinson 2015)

$$N = (a n + b) \exp[-q(a n + b)]$$

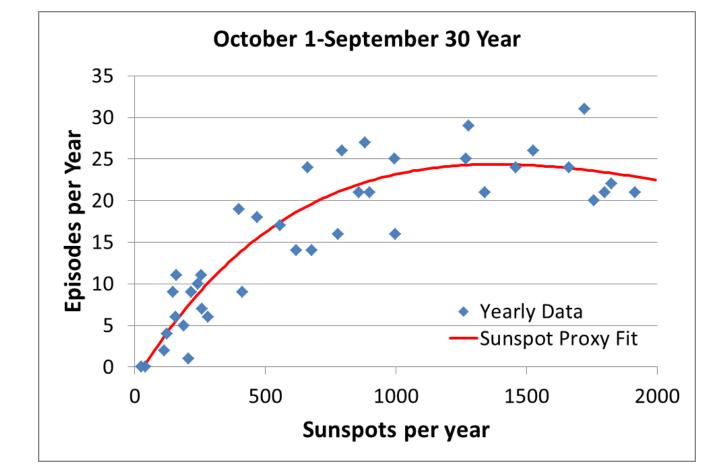
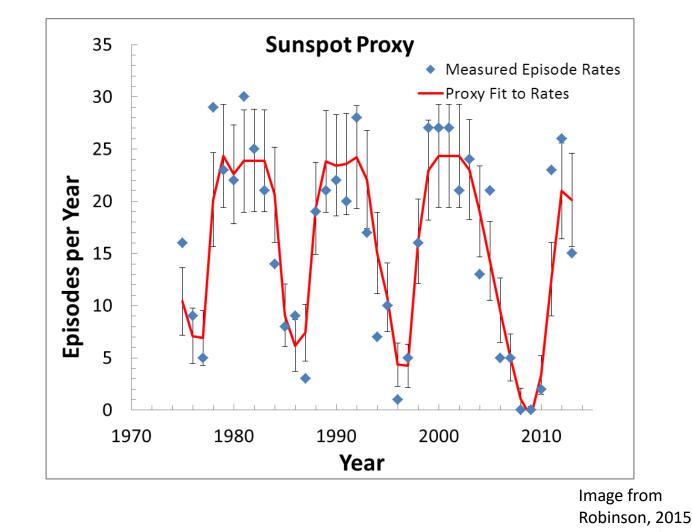
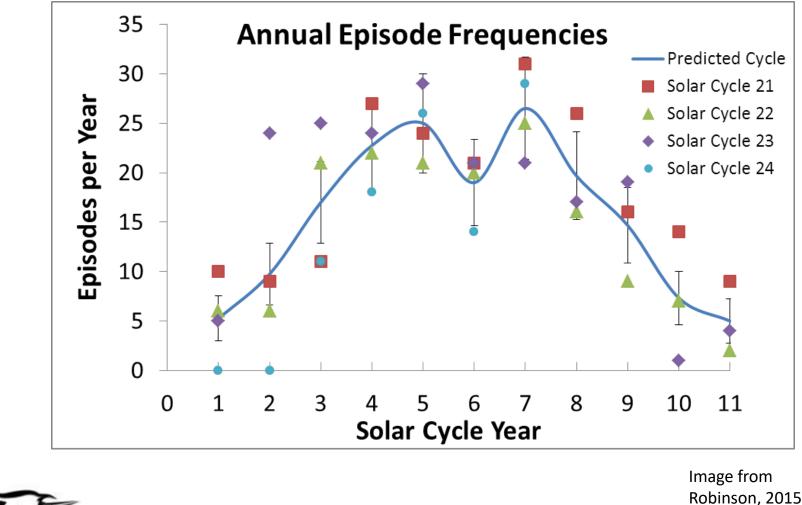



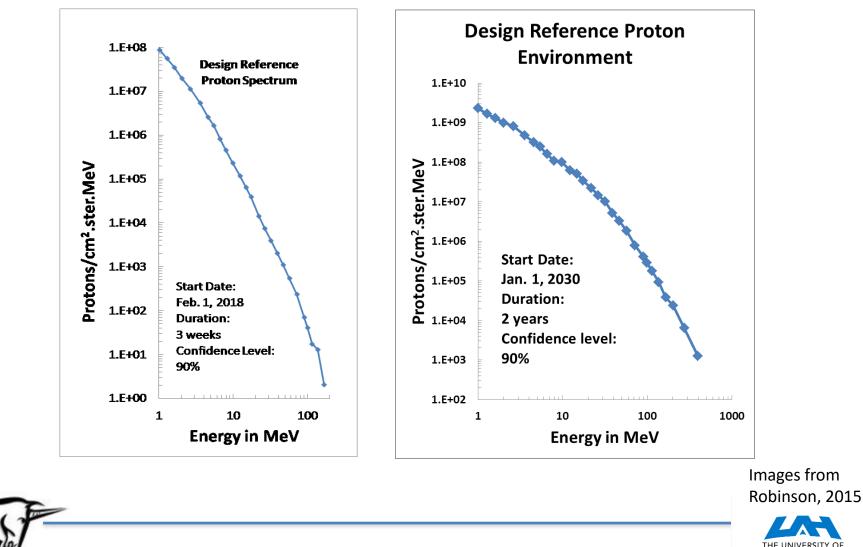
Image from Robinson, 2015

Fifth Gait Technologies, The Next Step


THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

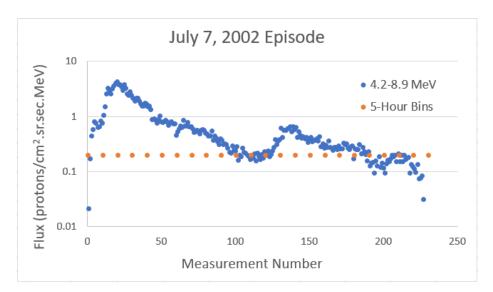
11-year solar cycle fit

- Fit an 11-year cycle to the database
- The set with the best Reduced Chi Squared was the year starting October 1 ending September 30 (Robinson 2015)



Fifth Gait Technologies, The Next Step

Episode-Integrated Fluence Model

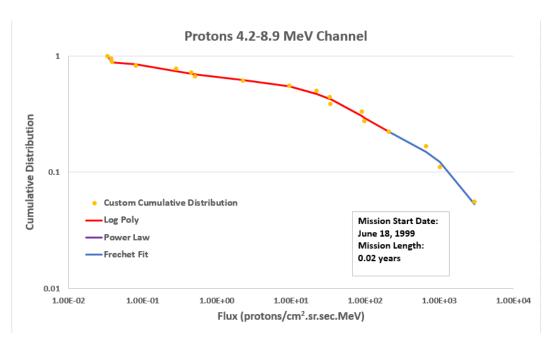

Fifth Gait) Technologies 17

THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

Peak Flux Model

Short Mission:

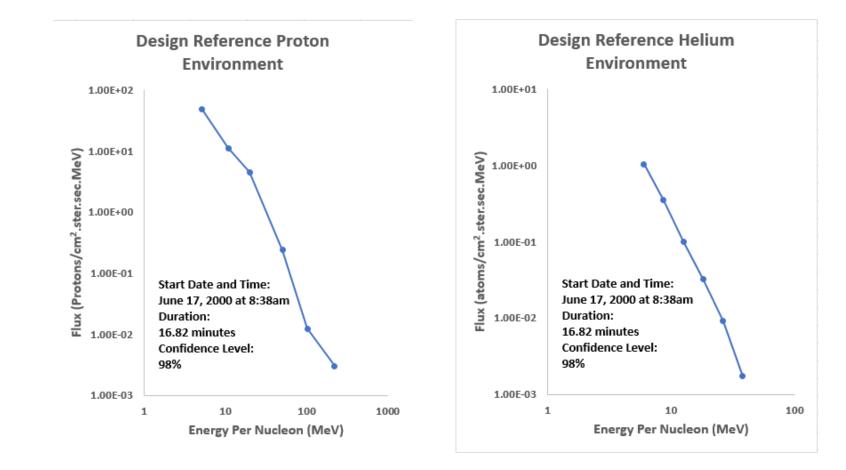
- Chronological list of flux measurements
 - Remove measurement at BKGD
- Mission length used to group data
 - Maximum flux taken to build a custom cumulative distribution
- Confidence Level used to determine if flux is above BKGD



Peak Flux Model

Short Mission:

- If under 1000 groups, use
 - 3 fits [Robinson, 2015]:
 - Power Law
 - 6th Order Logarithmic
 Polynomial
 - Fréchet Distribution
- If over 1000 groups, use the custom distribution
- Linear interpolation used between values in distribution



19

Fifth Gait Technologies, The Next Step

Peak Flux Model

Fifth Gait Technologies, The Next Step

Future Work

- Update the Episode-Integrated Fluence Model
 - -Include data from 2014-2016
 - –Improve the normalization between the satellites

- Add the heavier ions to the Peak Flux Model
 - -Build data bases for the most abundant elements
 - -Use elemental ratios to scale distributions

References

- Robinson, Z. D. (2015). New probabilistic model for episode integrated fluences of protons using episodes from 1973-2013. University of Alabama in Huntsville.
- Xapsos, M. A., Summers, G. P., & Burke, E. A. (1998). Probability model for peak fluxes of solar proton events. *IEEE Transactions on Nuclear Science*, 45(6 PART 1), 2948–2953. <u>https://doi.org/10.1109/23.736551</u>
- Crosby, N., D. Heynderickx, P. Jiggens, A. Aran, B. Sanahuja, P. Truscott, F. Lei, C. Jacobs, S. Poedts, S. Gabriel, I. Sandberg, A. Glover, and A. Hilgers, "SEPEM: A tool for statistical modeling the solar energetic particle environment," Space Weather, Vol. 13, Iss. 7, 2015, pp. 406–426.
- Kotz, S., & Nadarajah, S. (2000). *Extreme Value Distribution Theory and Applications*. Imperial College Press.
- Hathaway, D. H., Wilson, R. M., & Reichmann, E. J. (1994). The Shape of the Sunspot Cycles. *Solar Physics*, *151*, 177–190.

- Provides a way to study the extremes of a distribution in order to provide better predictions of the tails of a statistical distribution.
 - Used in a wide range of fields (including radioactive emission and rainfall analysis)
 - Determining whether outlying observations should be used by astronomers. (Kotz and Nadarajah, 2000)
 - This method used in the two models discussed today follows the work of Xapsos et al. (1998).

Maximize entropy

$$S = -\int_0^{M_{max}} p(M) \ln[p(M)] \, dM$$

Technologies

Where
$$M = \log(\phi)$$

Conditions:

$$\int_0^{M_{max}} p(M) dM = 1$$

$$\int_0^{M_{max}} Mp(M) dM = \omega$$

$$M_{min}=0$$

$$M_{max}$$
 is finite

Using Lagrange multipliers

$$p(M) = \frac{\lambda}{1 - \exp(-\lambda M_{\max})} \exp(-\lambda M)$$

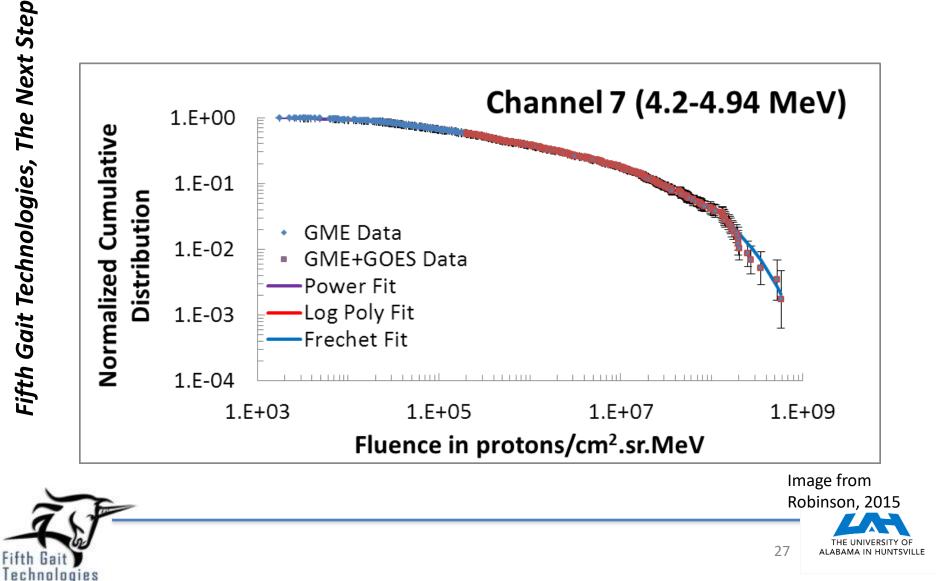
• Integrate from 0 to *M*:

$$P(M) = \frac{1 - \exp(-\lambda M)}{1 - \exp(-\lambda M_{\max})}$$

Fifth Gait Technologies, The Next Step

• The probability that n events won't have a flux $\geq \phi$:

 $[P(M)]^n$


• Using Poisson's equation:

$$\frac{\left[e^{(-\mu T)}(\mu T)^n\right]}{n!}$$

Approved for Public Release 17-MDA-9135 (12 April 17)

Cumulative Distributions

