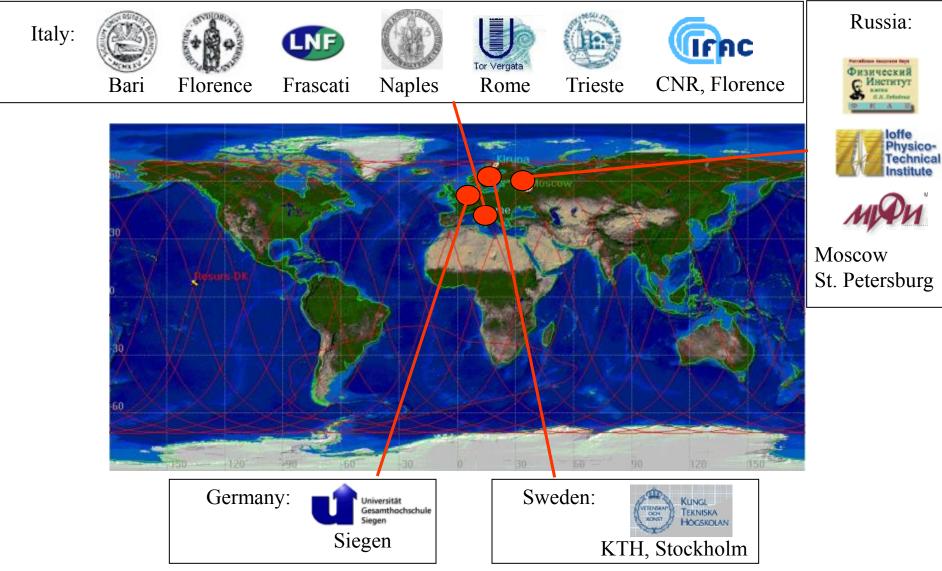


a payload for Antimatter Matter Exploration and Light-nuclei Astrophysics

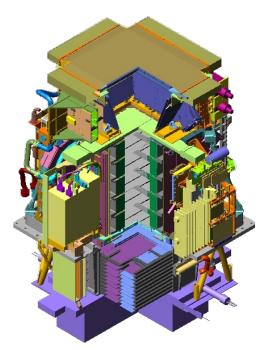
Observations of solar particle events with the PAMELA mission

A. Bruno*, G.C. Bazilevskaya, M. Boezio, E.R. Christian, G.A. de Nolfo, V. Di Felice, M. Martucci, M. Mergé, V.V. Mikhailov, R. Munini, J.M. Ryan, S. Stochaj

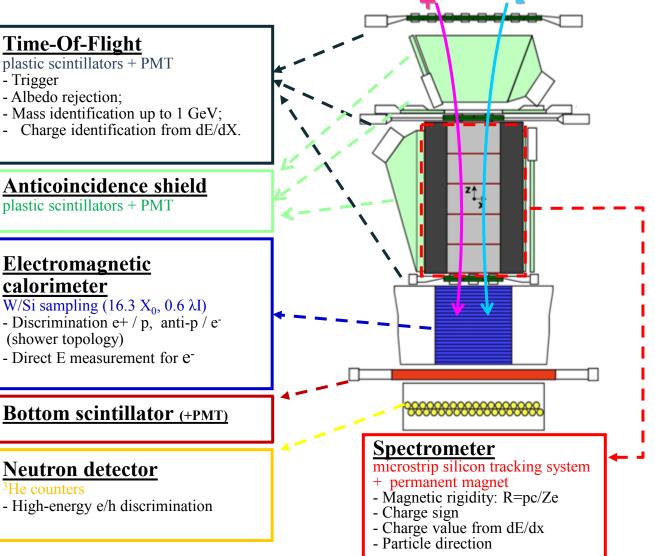
*INFN, Sezione di Bari, Italy


on behalf of the PAMELA collaboration

Solar Energetic Particles (SEP), Solar Modulation and Space Radiation: New Opportunities in the AMS-02 Era #2 Washington DC, 24-26 April 2017

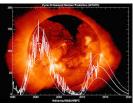

The PAMELA collaboration

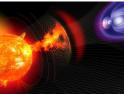
Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics

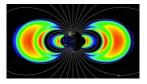

The PAMELA experiment

Main requirements \rightarrow high-sensitivity particle identification and precise momentum measure

Size: 130x70x70 cm³ GF: 21.5 cm² sr Mass: 470 kg Power Budget: 360W


Resurs DK-1 satellite: Semi-polar (70° inclination) and elliptical (350÷610 km altitude) orbit




PAMELA scientific goals

Precise measurements of protons, electrons, their antiparticles and light nuclei in the cosmic radiation

- Research for Dark Matter indirect signatures
- Exploration of the particle/antiparticle symmetry
 - Investigation of the cosmic-ray origin and propagation mechanisms in the Galaxy, the heliosphere and the terrestrial magnetosphere
 - detailed measurement of the high energy particle populations (galactic, solar, geomagnetically trapped and albedo) in the near-Earth radiation environment

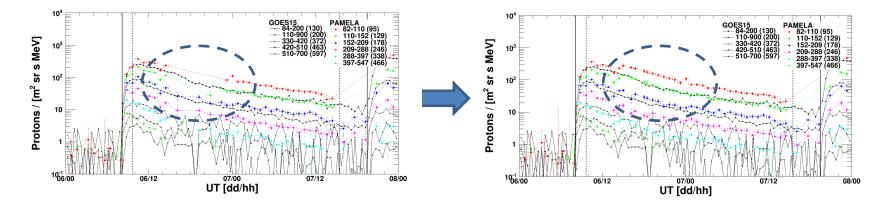
SEP measurements with PAMELA

wide energy interval (above ~80 MeV)

- bridging the low energy data by other space-based instruments and the GLE data by the worldwide network of neutron monitors (NMs)
- sensitive to particle composition

o protons, He nuclei, ...

- possibility to reconstruct the angular (or pitch-angle) distribution
 - investigation of flux anisotropies

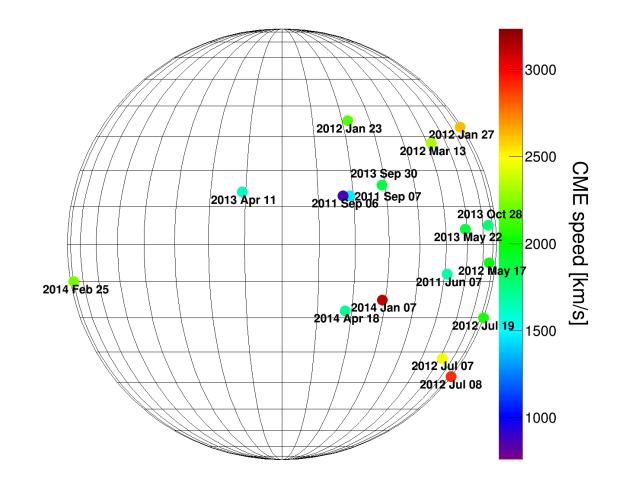


Flux reconstruction

- Thanks to the 70 deg inclination orbit, PAMELA can sample interplanetary particles down to the lowest cutoff rigidities (magnetic polar regions)
- To discard trapped and albedo particles and avoid magnetospheric effects, interplanetary CR fluxes are conservatively estimated by selecting protons with rigidity 1.3 times higher than the local vertical Störmer cutoff.
- The duty cycle increases with proton energy due to geomagnetic cutoff effects along the orbit
- Differential fluxes are evaluated on a relatively short time scale (48 min) corresponding to spacecraft semi-orbits

Flux reconstruction

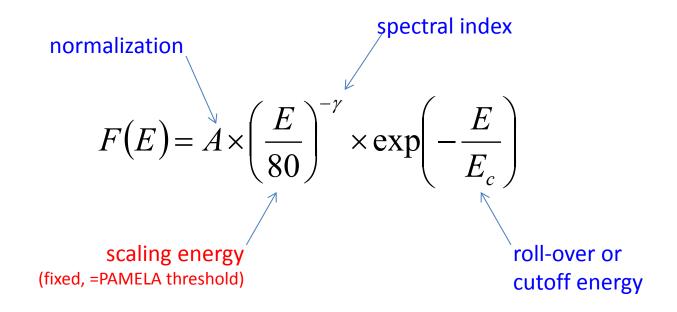
- The background associated to galactic CR protons is evaluated by averaging the fluxes measured by PAMELA during periods of quiet solar conditions, within ~2 Carrington rotation intervals around each SEP event.
- Pitch angle anisotropies with respect to the local IMF direction (onset phase) are properly estimated by accounting for the instrument asymptotic exposition along the satellite orbit (back-tracing techniques)
- Event-integrated fluences are corrected for missing orbits by means of interpolation methods:


List of PAMELA events (2006-2014)

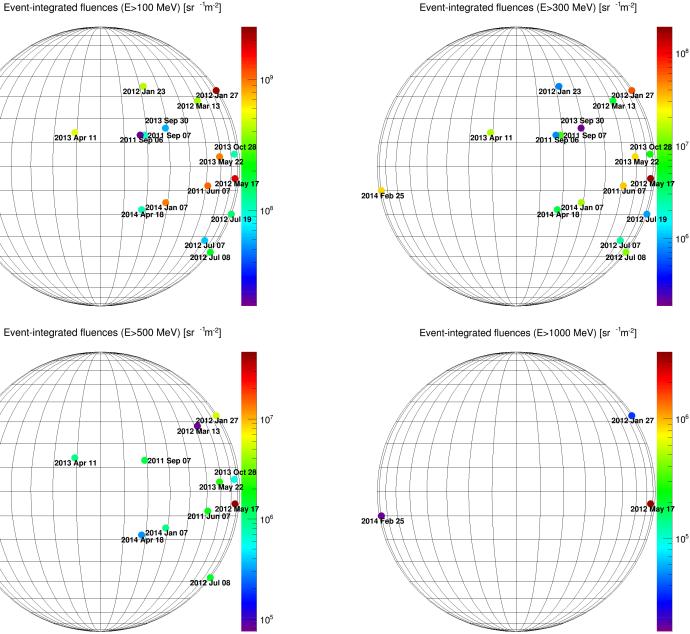
Event No.	Date	Class	Location	Event No.	Date	Class	Location		
1	2006 Dec 13	X3.4/4B	S06W23	15	2012 Jul 19	M7.7/	S13W88		
2	2006 Dec 14	X1.5/	S06W46	16	2012 Jul 23	?	>W90		
3	2011 Mar 21	M3.7/	>W90	17	2013 Apr 11	M6.5/3B	N09E12		
4	2011 Jun 07	M2.5/2N	S21W54	18	2013 May 22	M5.0/	N13W75		
5	2011 Sep 06	M5.3/	N14W07	19	2013 Sep 30	C1.3/	N17W29		
6	2011 Sep 07	X2.1/	N14W18	20	2013 Oct 28	M5.1	N08W71		
7	2011 Nov 04	?	?	21	2013 Nov 02	?	?		
8	2012 Jan 23	M8.7/	N28W21	22	2014 Jan 06	?	>W90		
9	2012 Jan 27	X1.7/1F	N27W71	23	2014 Jan 07	X1.2/	S15W11		
10	2012 Mar 07	X5.4/-	N17E27	24	2014 Feb 25	X4.9/B	S12E82		
11	2012 Mar 13	M7.9/	N17W66	25	2014 Apr 18	M7.3/	S20W34		
12	2012 May 17	M5.1/1F	N11W76	26	2014 Sep 01	?	>W90		
13	2012 Jul 07	X1.1/	S13W59	27	2014 Sep 10	X1.6/	N14E02		
14	2012 Jul 08	M6.9/1N	S17W74	All flares are associated with (halo) CMEs					

Flare data from https://cdaw.gsfc.nasa.gov/CME_list/sepe/

Red=back-side events; blue=eastern limb events


Heliographic map of PAMELA events

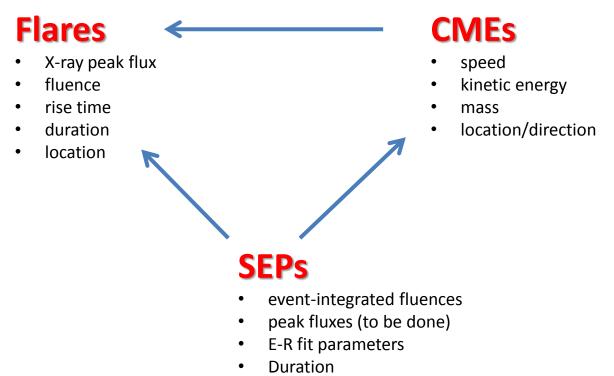
CME data are from Gopalswamy et al. (2014, 2015).


Initial source locations are corrected for the solar B0 angle and the non-radial CME motion. The *sky-plane* speeds are from the SOHO/LASCO catalog. *Peak space* speeds attained by the CMEs (used in this work) are derived from the flux-rope fit.

The Ellison-Ramaty fit

Roughly speaking, the slope of the power law is related to the Mach number and the compression ratio, which govern the efficiency for shock acceleration, while the cutoff energy is a reflection of the loss mechanisms (e.g., available acceleration time). The «scaling» energy is useful to decorrelate A and γ .

Event-integrated fluences vs heliographic locations



Event-integrated fluences (E>100 MeV) [sr ⁻¹m⁻²]

2014 Feb 25

2014 Feb 25

Correlation studies

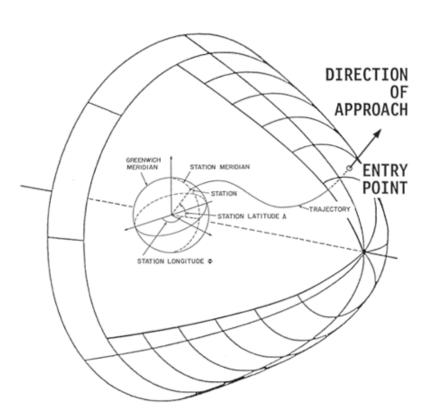
• Delay/propagation time (to be done)

Investigation of (semi-)empirical statistical relations between the observed properties (deductive approach)

SEP correlations

preliminary!

	X-ray peak flux	X-ray duration	X-ray rise time	CME speed	CME kinetic energy	CME mass	Latitude total / <22deg only	Longitude
Α	0.07	0.62	0.33	0.42	0.86	0.74	0.04/-0.24	0.05
γ	0.00	0.16	0.42	0.44	0.63	0.45	-0.07/0.25	0.17
E _c	0.03	0.04	0.00	0.16	0.30	0.40	-0.34/-0.47	0.20
F>80	0.09	0.57	0.31	0.37	0.83	0.80	-0.06/ -0.50	0.08
F>100	0.10	0.56	0.30	0.32	0.77	0.79	-0.14/ -0.57	0.11
F>300	-0.03	0.34	0.36	0.09	0.38	0.58	-0.37/-0.53	0.18
F>500	-0.14	0.24	0.40	-0.02	0.19	0.49	-0.32/-0.43	0.32
F>700	-0.21	0.26	0.39	-0.10	0.14	0.44	-0.36/-0.44	0.31

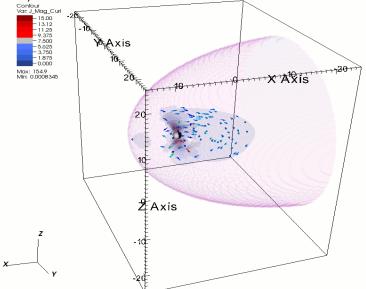

Correlation coefficients for the E-R fit parameters (A, γ , E_c) and the event-integrated fluences at different thresholds (>80, >100, >300, >500, >700 MeV)

Red: strong correlation ($|R| \ge 0.7$). **Blue**: good correlation ($0.7 > |R| \ge 0.5$). **Green**: weak correlation ($0.5 > |R| \ge 0.3$). **Black**: no correlation (|R| < 0.3).

SEP anisotropies

Trajectory analysis

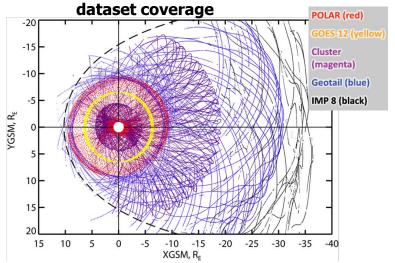
Motivation

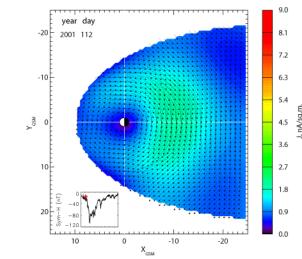


[Shea & Smart, ERP No 524, AFCRL-TR-75-0381, 1975]

- In order to measure SEP angular distributions (and investigate the degree of anisotropy), it is necessary to account for the effect of the geomagnetic field on particle propagation.
- Typically (NMs) one is interested in particle arrival "asymptotic directions", i.e. the directions of approach before they enter the magnetosphere.
- To determine asymptotic directions, particle trajectories are reconstructed in a model magnetosphere by means of **numerical integration methods** (Smart & Shea 2005).
- ★ The trajectory analysis also allows to evaluate geomagnetic cutoff rigidities and to separate protons of interplanetary (GCRs & SCRs) and atmospheric (trapped & albedo) origin.

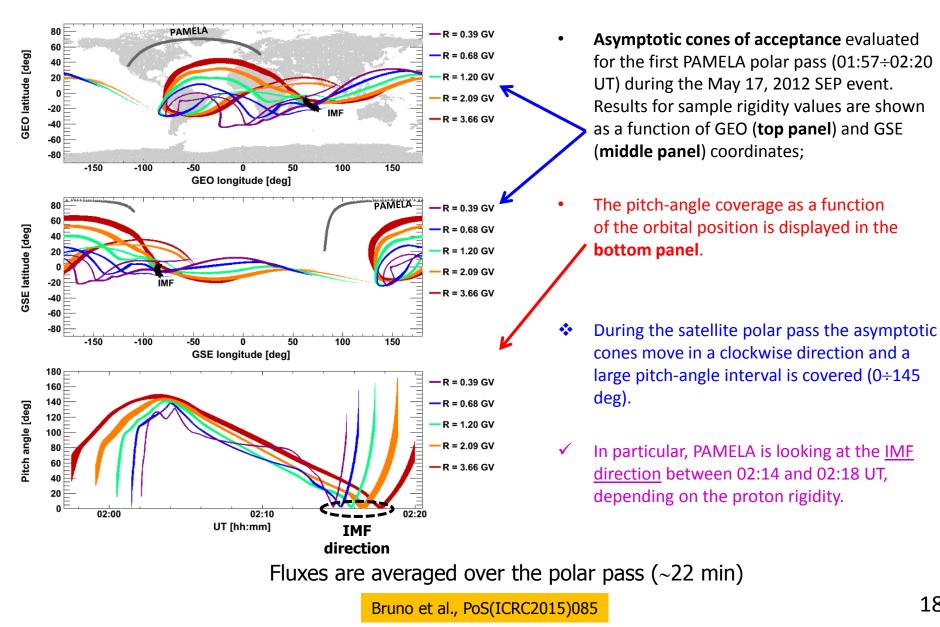
Trajectory analysis


Gemagnetic field models

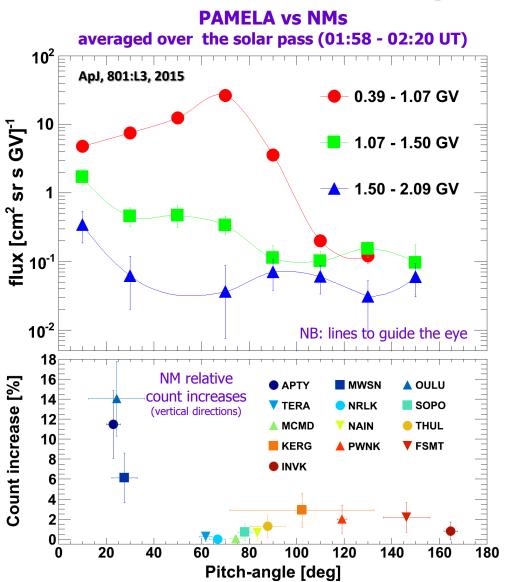

The Tsyganenko models are **semi-empirical** best-fit representations for the external magnetic field

The **TS07D** model (Tsyganenko & Sitnov 2007):

- Dynamical, high-resolution description:
 - large (~10⁶ points) dataset based on <u>recent</u> (1995-2005) spacecraft measurements (Cluster, Polar, Geotail, IMP-8, GOES 8-12);
- ✤ Coverage: < 30-35 R_E;
- More flexible and strongly superior to all past empirical models in reconstructing distribution of storm-scale currents.

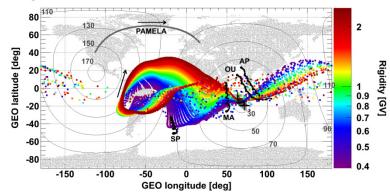


For more details: <u>http://geomag_field.jhuapl.edu/model/</u>


The 2012 May 17 event

Effective area calculation

The 2012 May 17 event


Pitch-angle distribution

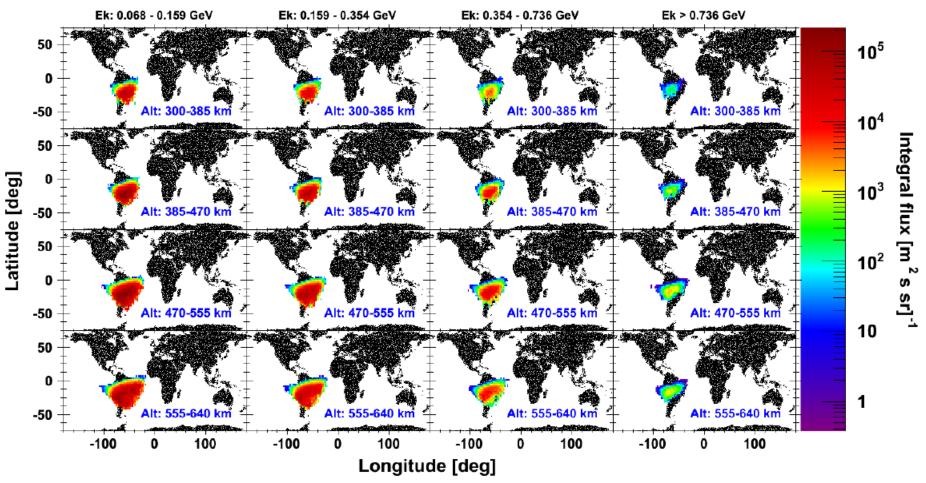
PAMELA observes two populations simultaneously with very different pitch angle distributions:

- a low-energy component (<1 GV)
 - confined to pitch angles <90°
 - and exhibiting signicant scattering or redistribution;
- and a high-energy component (>1.5 GV)
 - beamed with pitch angles <30°,
 - o consistent with NM observations.
- The component with intermediate energies (1 -1.5 GV) suggests a transition between the low and high energies.

At rigidities >1 GV, corresponding to NM data, the particles are mostly field aligned.

May 17, 2012, 01:57:00 - 02:20:00 UT

Summary

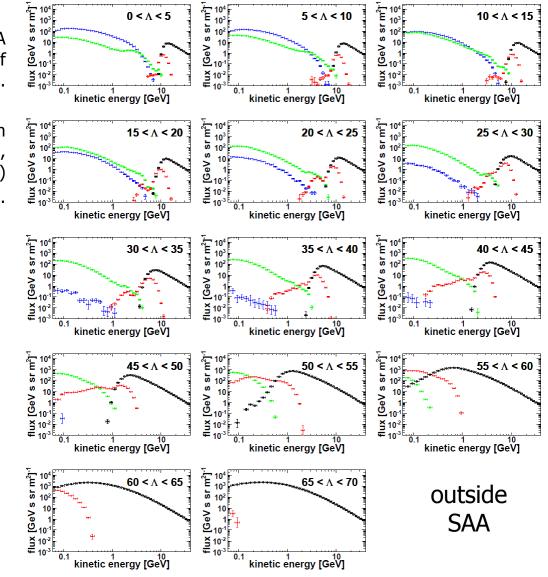

- PAMELA is providing comprehensive measurements of SEP events at high energies (>80 MeV)
 - 27 SEP events, including 2 GLE and 1 sub-GLE
 - spectra/fluences, angular distributions, composition
 - Data were compared with main flare/CME parameters, investigating possible correlations, including their dependency on energy

Spare slides

Geomagnetically trapped protons

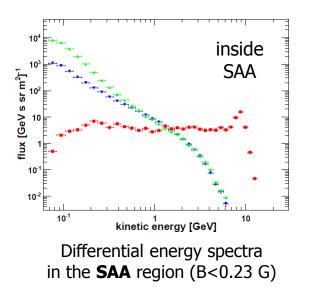
Geographic Maps

columns: same energy bins rows: same altitude bins



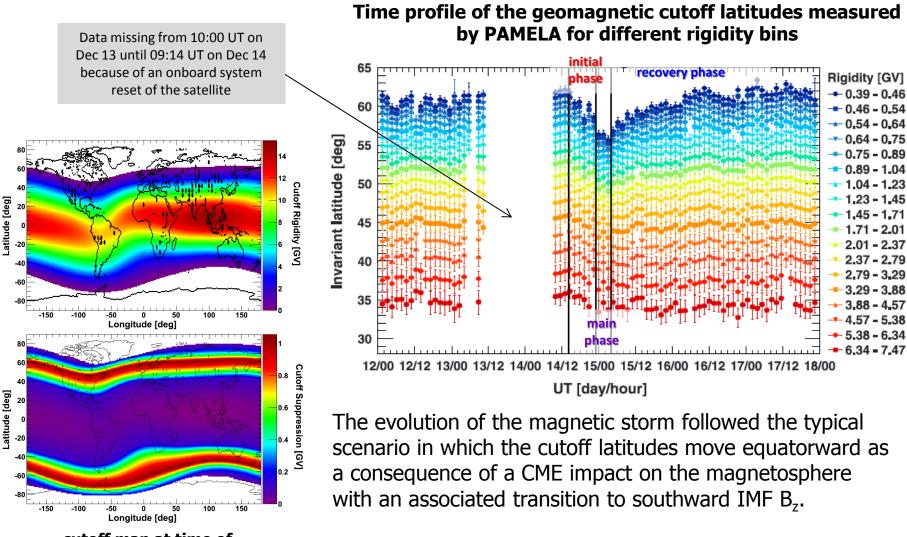
Stably-trapped integral flux (m⁻²s⁻¹sr⁻¹) averaged over the pitch angle range covered by PAMELA, as a function of geographic coordinates, evaluated for different energy (columns) and guiding center altitude (rows) bins.

Adriani et al., 2015, ApJ 799 L4


Albedo protons

Energy spectra vs latitude

Differential energy spectra outside the SAA region measured for different bins of magnetic latitude (see the labels).


Results for the different proton populations are shown: quasi-trapped (**blue**), precipitating (**green**), pseudo-trapped (**red**) and interplanetary (**black**).

Adriani et al., 2015, JGR – Space Physics, 120

Geomagnetic effects

the 2006 Dec 14 magnetospheric storm

cutoff map at time of maximum suppression

Adriani et al., Space Weather, 14, 2006