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Solar Energetic Particles (SEPs)

* SEPs: energetic particles accelerated (from a few keV
to up to ~GeV) near the Sun mainly during flares and
coronal mass ejections.

* Large SEPs: proton intensity in >10 MeV GOES energy
channel >10 pfu, 10 per year on average

* Ground Level Enhancements or GLEs: up to GeV, 16 in
solar cycle 23, only 2 (3) in cycle 24, why?



e Large SEPs are usually associated with CMEs and are
accelerated by CME-driven shocks.
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Some important factors for large SEPs

Very fast (1-2%) CMEs (Kahler 2001; Gopalswamy et al.;
Mewaldt et al.; ...)

Magnetic connectivity to Earth (Gopalswamy et al.;
Reames; ...)

Preceding CME or twin-CMEs (Gopalswamy et al. 2004;
Li et al. 2012; Ding et al. 2013; ...)

Magnetic-field geometry (Tylka et al. 2005; Sandroos &
Vainio 2009; Guo et al. 2010; this work; ...)

In this talk, | shall emphasize the importance of a

streamer-like magnetic field to particle acceleration
at coronal shocks.




Why a steamer-like magnetic field?

e Streamers are the most obvious structures in the corona.

* Many CMEs originate below a streamer or interact with
streamers as propagating outwards/expanding laterally.

* It will affect the shock properties, not considered here.

Rouillard et al. 2016
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Evidences for shocks low in the corona

* Recent EUV imaging by SDO/AIA, enhancement ahead
of the CME (shock at ~1.2 Rs).

* Associated with a type Il radio burst (excited by shock-
accelerated electrons, a tracer for shocks).
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Evidence for particle acceleration low in the corona

GLE and m Typell Height vs. Longitude
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Gopalswamy et al. 2012
(also: Reames 2009)

A shock is very likely to form and start
accelerating particles well below 2 Rs.




Modeling of particle acceleration at shocks
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diffusion advection energy change sources

Steady-state solution of the Parker equation for a 1D planar shock,
downstream distribution: f(p) ~ (p/po)™" with o =3X/(X —1)

* Numerous SEP modeling works have
been performed (Lee 1983; Ng et al.

1999; Zank et al. 2000; Li et al. 2003;

Giacalone 2015; ...)

* Magnetic turbulence near the shock:

enable particle scattering

* Shock geometry: acceleration rate is
faster at a perp. shock than at a
parallel shock (if not consider self-
excited waves at parallel shocks)

Shock

A |

| |

| ) )
4

) \

Nearly-Perpendicular >// 4\ )\
Shock S BB £ (((

) \ X ( | VLN TN N

) \ ) AN NN A :

J. Giacalone




Z (solar radii)

Particle acceleration at coronal shocks

magneticfield

X (solar radii)

B.C. Low 1986

A circular shock moves with
constant speed (2000 km/s) and
compression ratio (X = 3).

Shock center fixed at 0.1 Rs
above solar surface, initial shock

radius 0.2 Rs (outermost shock
front at 1.3 Rs).

An analytical streamer-like
coronal field (shock upstream).

For comparison, also consider a
radial magnetic field.
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Consider spatial diffusion both along (parallel) and across
(perp.) the magnetic field, momentum-dependent.

Quasi-linear theory (Giacalone & Jokipii 1999):

Ko = 1.4 x 10" em? s= (for p = p,, 100 keV protons)

R = Kjo(p/po)*? kL = 0.04 g

Background solar wind is at rest.

Downstream magnetic field is
compressed, analytically given by
solving the induction equation.

100 keV protons are continuously
injected upstream of the shock at
a constant rate.

The Parker equation is solved by a
stochastic integration method.
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Advantages of the model:
* Varying shock geometry.

* Consider perpendicular diffusion, important to particle
acceleration at a perpendicular shock.

 The shock can be well resolved, necessary to get
correct results.

Main issues to be addressed:

* Can a coronal shock accelerate particles efficiently
within a few solar radii? To what energies?

 What is the effect of a streamer-like magnetic field?



Differential intensity dJ/dE = p%f(p)

1. Energy spectrum of accelerated particles

108 r— e Pgrticles can be

T | sufficiently accelerated
to >100 MeV within 2 Rs,
consistent with
observations (Reames
2009; Gopalswamy et al.
2012).

 Power-law breaks at
| ~100 MeV, maximum
energy several hundred
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Differential intensity dJ/dE = p*f(p)

Comparison with a radial magnetic field:
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Particle acceleration in
the streamer-like field is
much more efficient
compared to a simple
radial field (breaks at
~10 MeV).

At 2 Rs, the intensity at
100 MeV is enhanced
by 103.
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2. Distribution of accelerated particles
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Distribution of <10
MeV particles is
generally uniform
along the shock,
while >90 MeV
particles are
concentrated at
shock nose.

Particles can be
accelerated to ~100
MeV below 2 Rs.
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What causes the difference?

* Perpendicular shock geometry: in a streamer-like field,
first at shock nose, later at shock flanks
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* Natural trapping effect of closed magnetic field: trap
particles and help particle acceleration

Mainly accelerated in close field (<2.5 Rs), to 65 p0 (~400 MeV)
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3. Provide predictions for Solar Probe Plus

* Energy spectrum
gy sp Intensity profiles at 10 Rs

* Intensity-time profiles at the equator:
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Summary

We present a numerical model to study particle
acceleration at coronal shocks.

A coronal shock can sufficiently accelerate particles to
>100 MeV within a few solar radii.

Streamer-like magnetic field (or more generally,
closed loops) can be an important factor in producing
large SEP events.

Kong et al. Particle Acceleration at Coronal Shocks:
The Effect of Large-Scale Streamer-like Magnetic Field
Structures, Astrophysical Journal, in preparation
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