

Fermi Large Area Telescope observations of high-energy gamma-ray emission from Solar Flares

Melissa Pesce-Rollins, N. Omodei, A. Allafort, V. Petrosian, W. Liu INFN-Pisa melissa.pesce.rollins@pi.infn.it

on behalf of the *Fermi*-LAT collaboration

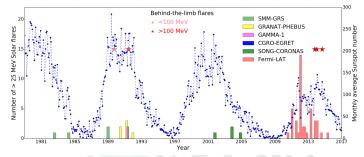

April 26, 2017

THE *Fermi* SPACE TELESCOPE

Gamma-ray Burst Monitor (GBM)

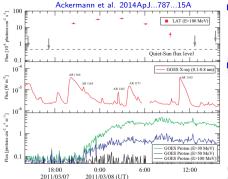
- 12 Nal and 2 BGO detectors
- Energy range: 8 keV–40 MeV
- Observes entire unocculted sky

LAT FoV


- Pair conversion telescope
- Energy range: 20 MeV-> 300 GeV
- Large field of view (≈ 2.4 sr): 20% of the sky at any time, all parts of the sky for 30 minutes every 3 hours
- Observes the Sun for ~20 40 min every 3 hours

FERMI LAT AS A SOLAR OBSERVATORY

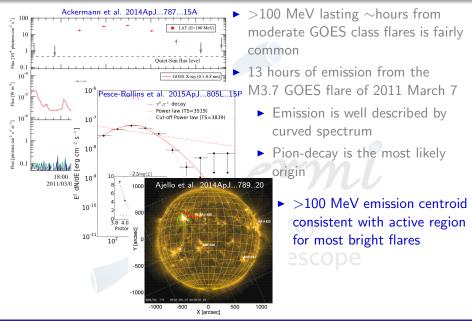
The LAT standard analysis

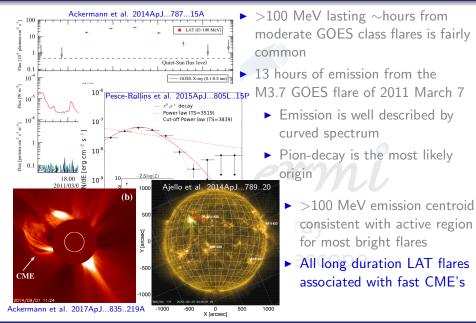

- Likelihood fit of spatial and spectral model of region around sun
- ► Event classification (photon v. bkg) on event-by-event basis
 - Use classification trees to reject bkg and give high-quality photon data
- High flux of hard x-rays during solar flares can cause pile-up in the ACD
 - With Pass7 high probability of mis-classifying good photons as background
 - Problem solved with new Solar flare event classes in Pass8
- The LAT Low Energy (LLE) analysis
 - Most Useful for short transients (10s of minutes or less)
 - Model the background by fitting time series of LAT events from region around sun
 - Relaxed event classification gives high effective area but lower signal to noise

WHY STUDY SOLAR FLARES WITH Fermi?

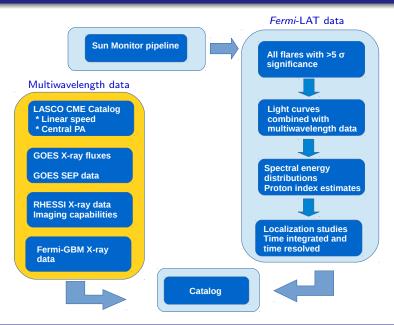
▶ In the 1980's and 1990's limited sampling of solar flares with E>25 MeV

- All of which were classified as GOES X class flares
- ▶ Extended >100 MeV emission for ~8 hours detected by EGRET
- ► 3 behind-the-limb flares with E<100 MeV
- ► Fermi has detected more than 40 Solar flares in Solar cycle 24
 - More than half are GOES M class
 - Extended >100 MeV emission for more than 20 hours
 - Including 3 behind-the-limb flares with >100 MeV emission

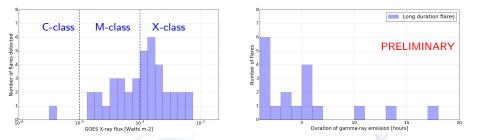



- >100 MeV lasting ~hours from moderate GOES class flares is fairly common
- 13 hours of emission from the M3.7 GOES flare of 2011 March 7

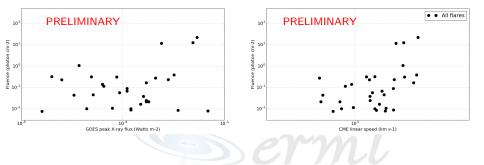
Gamma-ray Space Telescope



M. Pesce-Rollins (INFN)

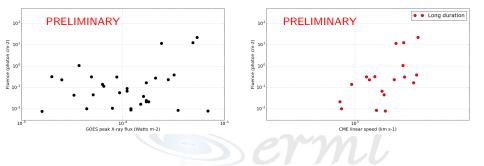

THE FIRST FERMI-LAT SOLAR FLARE CATALOG

M. Pesce-Rollins (INFN)


April 26, 2017

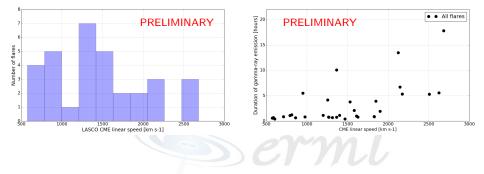
THE FIRST FERMI-LAT SOLAR FLARE CATALOG

- Total of 42 high significance solar flares detected since 2010
- 3 behind-the-limb flares
 - First detections with emission >100 MeV
- ► 14 impulsive flares
- ▶ 18 with emission lasting \geq 1 hour | elescor
- Almost half of the total sample consists of GOES M-class flares
 - 1 GOES C-class flare detected

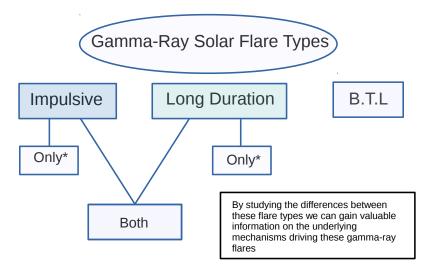

CORRELATION STUDIES

 Compared the fluence of the LAT detected solar flares with the peak GOES X-ray flux

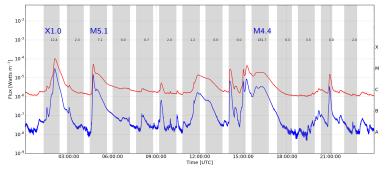
- Pearson correlation of 0.27 found
- Compared the fluence of the LAT detected solar flares with the LASCO CME linear speed
 - Pearson correlation of 0.46 found


CORRELATION STUDIES

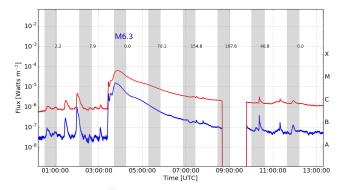
 Compared the fluence of the LAT detected solar flares with the peak GOES X-ray flux


- Pearson correlation of 0.27 found
- Compared the fluence of the LAT detected solar flares with emission lasting more than 1 hour with the LASCO CME linear speed
 - Pearson correlation of 0.60 found

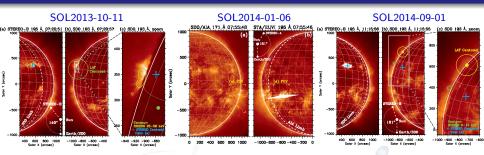
CMEs and Fermi-LAT flares


- Distribution of LASCO CME linear speeds for the solar flares detected by *Fermi*-LAT (left)
- Duration of *Fermi*-LAT flares as a function of CME linear speeds (right)
 - Pearson correlation of 0.60 found

FLARE TYPES


* Even if the Sun was in the field of view of the LAT, no impulsive/long duration emission was detected.

Solar flares of 2013 October 28


- 3 flares were detected on the 28 of October 2013
- The first two were impulsive only managed.
 - Sun in the LAT field of view during X-ray flare and in the decay phase
 - No long duration emission detected elescope
- ► The Sun was in the field of view ~15 min after end of the third X-ray flare → impulsive phase missed

LONG DURATION FLARE OF 2012 MARCH 9

- GOES X-ray flare started at 03:22 peaked at 03:53 and ended at 04:18 UTC
- ► Sun in the LAT field of view starting at 03:41 and no emission detected
- Significant LAT detection lasting roughly 5 hours
 - Flux peaking around 09:00 UTC \rightarrow almost 5 hours after the X-ray peak

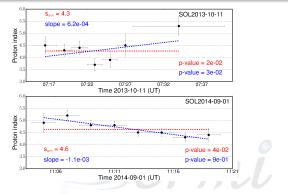
LAT BEHIND-THE-LIMB FLARES

- Located ~10° behind the eastern limb
- >100 MeV emission for 30 minutes
- RHESSI emission consistent with loop top
- Upper limits on nuclear line emission from GBM
- LAT emission centroid consistent with on-disk

- Located ~10° behind the western limb
- >100 MeV emission for 20 minutes
- Associated with very strong SEP event
- Gamma-ray onset time consistent with Solar Particle Release time
- Insufficient statistics for localization

- Located ~40° behind the eastern limb
- >100 MeV emission for ~ 2 hours
- GBM and Konus emission up to few MeV
- 2.23 MeV line marginally visible in GBM
- LAT emission centroid consistent with on-disk

LAT BEHIND-THE-LIMB FLARES


Date (UTC)	$GOES^a$ class	$\begin{array}{c} {\rm CME~speed}^b \\ ({\rm km~s^{-1}}) \end{array}$	AR position	Duration (minutes)	$\begin{array}{c} {\rm Peak \ Flux}^c \\ (10^{-5} \ {\rm ph \ cm^{-2} \ s^{-1}}) \end{array}$	$E_{\gamma} > 100 \text{ MeV}^d$ (ergs)	Proton ^e index	$E_p > 500 \text{ MeV}^f$ (ergs)
2013-10-11	M4.9	1200	N21E103	30	49 ± 2	1.5×10^{23}	4.3 ± 0.1	9.8×10^{24}
2014-01-06	X3.5	1400	S8W110	20	0.8 ± 0.1	4.2×10^{21}	5.3 ± 0.4^{g}	3.5×10^{23}
2014-09-01	X2.4	2000	N14E126	113	565 ± 14	1.4×10^{24}	4.7 ± 0.1	7.0×10^{25}
				On-di	sk flares			
2011-03-07	M3.7	2125	N30W48	798	3±1	5.1×10^{23}	4.7 ± 0.2	3.6×10^{25}
2011-06-07	M2.5	1255	S22W53	38	3±1	3.2×10^{22}	5.0 ± 0.3	2.5×10^{24}
2012-03-07I ^h	X5.4	2684	N16E30	45	417 ± 13	3.9×10^{24}	3.90 ± 0.02	2.1×10^{26}
$2012-03-07E^{i}$	X5.4	2684	N16E30	1068	97 ± 2	1.4×10^{25}	4.3 ± 0.1	9.0×10^{26}

COMPARISON BETWEEN BEHIND-THE-LIMB AND ON-DISK FLARE QUANTITIES

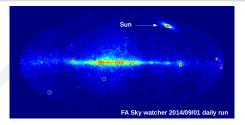
Ackermann et al. 2017ApJ...835..219A

- Comparison between behind-the-limb flare quantities and on-disk flares
- Proton indexes comparable
- Peak fluxes and the total energy released by protons with E>500 MeV for Sep14 and the impulsive phase of SOL2012-03-07 are comparable

LAT BEHIND-THE-LIMB FLARES

- Temporal variation of the proton index for behind-the-limb flares SOL2013-10-11 and SOL2014-09-01
- The temporal variation over tens of minutes is not sufficient to conclude whether a softening or hardening is present
- For the on-disk flare SOL2012-03-07 the spectrum softened with a time scale of a few hours

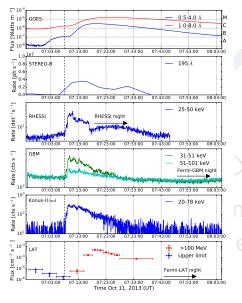
SUMMARY


- The Fermi-LAT has detected high energy gamma-rays from more than 40 solar flares over the first 8 years of mission
 - Almost half of which are GOES M class
 - Sampling both impulsive and sustained emission
 - Extended emission lasting hours is fairly common
 - ► >100 MeV emission is most likely due to pion-decay
- First detection of >100 MeV emission from behind-the-limb Solar flares
 - Flares originate from behind both eastern and western limbs
 - Photons with energies up to 3 GeV measured from two of these flares
- Behind-the-limb flare observations seem to suggest a spatially extended component for high-energy gamma-rays
 - This component must subtend more 30° heliolongitude
 - Coronal Mass Ejection (CME) generated shocks could accelerate the particles over such a large range
- ► The First Fermi-LAT Solar flare catalog is in preparation

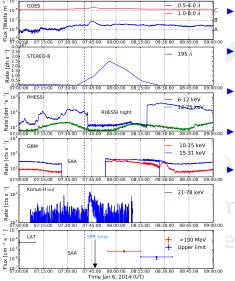
Spare slides

Gamma-ray Space Telescope

EXCEPTIONAL BEHIND-THE-LIMB FLARE


Ackermann et al. 2017ApJ...835..219A GOES 0.5-4.0 Å [Watts 1.0-8.0 Å 10 ... 1.5 STEREO-R — 195 Å Rate [ph s 00 11:55:00 12:10:00 12:25:00 12:40:00 12:55:00 Rate [det⁻¹s⁻¹] 4-8 keV RHESSI 15-30 keV RHESSI night 11:25:00 11:40:00 11 Rate [cts s⁻¹] GBM 15-31 keV 103 52-101 keV 113-4069 ke\ Fermi-GBM night 11:55:00 12:10:00 5.00 12.40.00 12.55 Rate [cts s⁻¹] 10⁵ Konus-Wind 20-78 keV - 10⁻² - 10⁻³ - 10⁻³ 10⁻⁴ AT >100 MeV Upper limit Fermi-LAT night 10:55:00 11:10:00 11:25:00 11:40:00 11:55:00 12:10:00 12:25:00 12:40:00 12:55:00 Time Sep 1, 2014 (UT)

- The September 1^{st} 2014 flare was unleashed from an active region near 40° behind the visible limb
 - More than 500,000 km (300,000 mi) behind the visible side of the Sun
- 15 photons with E>1 GeV detected during the first 15 minutes (including 3.5 GeV photon)


Press release at 2017 APS meeting in Washighton D.C

First >100 MeV behind the limb flare

- Estimated GOES class from STEREO EUV emission is M4.9
- RHESSI and GBM detected emission up to 50 keV above the chromospheric limb
- >100 MeV emission detected for 25 minutes by LAT
- Pass7_REP data published in ApJL, 805, L15
- Re-analyzed the flare with new
 Fermi-LAT Pass 8 data
 - Gained 5 minutes of detection
 with respect to Pass7_REP
 - Detection from 07:10 07:40 UT

SOL2014-01-06

- Estimated GOES class based on STEREO EUV emission is X3.5
 - Konus detected emission up to 78 keV
 - *RHESSI* detected emission after 8:20 UT
 - *Fermi* satellite was in the SAA from 7:25 7:55 UT
 - Both detectors on-board *Fermi* detected emission from this flare upon exiting the SAA:
 - GBM detected emission in the 10's of keV range
 - LAT detected >100 MeV emission for ~20 minutes

Impulsive flares and CMEs

Date	CME onset (UTC)	LAT onset (UTC)	LAT-CME (min)	LAT duration (min)
2010-06-12	01:31	00:55	-36	~1
2011-08-09	08:12	08:01	-11	~ 3
2011-09-24	09:48	09:34	-14	~1
2013-10-25	23:12	20:56	-136	~1
2013-10-28	04:48	04:37	-11	~1
2014-02-25	01:25	00:41	-46	~ 3

LLE FLARES AND CME ONSETS

► Six out of 12 LLE flares have onsets prior to the onset of the CME

- The duration of the LLE flare is much shorter than the difference in onsets
- Indication that the CME probably does not play a role in the acceleration of the particles producing the gamma-ray emission
- These are short flares which have very similar time structures as the hard x-ray flares
 - Indication that they may have acceleration mechanism in common