
TTreeProcessor: 
A toy framework for

parallel ntuple processing
Brian Bockelman

DIANA forum, 14 November 2016

In the beginning
TH1F *myHist = new TH1F(“h1”, “ntuple”, 100, -4, 4);
TFile *tf = TFile::Open(“myfile.root”);
TTreeReader myReader(“T”, tf);
TTreeReaderValue<Float_t> myPx(myReader, “px”);
TTreeReaderValue<Float_t> myPy(myReader, “py”);
while (myReader.Next()) {
 myHist->Fill(*myPx + *myPy);
}

Sketched from https://root.cern.ch/root/html/tutorials/tree/hsimpleReader.C.html

https://root.cern.ch/root/html/tutorials/tree/hsimpleReader.C.html

In Plain English
TH1F *myHist = new TH1F(“h1”, “ntuple”, 100, -4, 4);
TFile *tf = TFile::Open(“myfile.root”);
TTreeReader myReader(“T”, tf);
TTreeReaderValue<Float_t> myPx(myReader, “px”);
TTreeReaderValue<Float_t> myPy(myReader, “py”);
while (myReader.Next()) {
 myHist->Fill(*myPx + *myPy);
}

“Given a new histogram, fill it with the contents of
(px+py) from the tree T in the file myfile.root.

The rest is mostly boilerplate!

Boilerplate Hurts!
• Boilerplate hurts!

• Cognitively, it distracts from what the user is trying to accomplish.

• Provides opportunity for bugs.

• Forces use of a particular API (4 years ago, the example would have used
“SetBranchAddress” and friends).

• Forces the user to hardcode semantics that may not be necessary.

• Hardcoded semantics in this example:

• Single thread.

• Loop iterations are dependent.

• TTreeReader-based reading.

• Other than a for-loop, what other paradigms could be used to process ntuples?

Stream Processing
• Stream processing is a programming paradigm where, given a sequence

of data (a stream), a series of operations (kernel functions) is applied to
each element in the stream.

• Idea:

• User should specify a series of a few simple kernels.

• The processing framework should take care of creating streams and
executing the kernels. The framework finds parallelism (fork/join
streams) as necessary.

• Framework provides a few common helper kernels to ease use.

• Encourages functional-like programming, but is not functional (kernels
may have side-effects).

Background reading: https://en.wikipedia.org/wiki/Stream_processing
http://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html

https://en.wikipedia.org/wiki/Stream_processing
http://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html

Stream Processing for
ROOT

• I would like to introduce the stream processing paradigm to the
ROOT ecosystem.

• I believe it could be made non-invasive: users could quickly pick
up the concepts but not have to learn Haskell-with-C++-syntax.

• Stylistically, aligns with the “Big Data” ecosystem but still
keeps with the familiar (ROOT).

• Currently project: the TTreeProcessor: https://github.com/
bbockelm/ttreeprocessor

• The TTreeProcessor library is a header-only package,
dependent on ROOT, TBB, and Vc.

https://github.com/bbockelm/ttreeprocessor
https://github.com/bbockelm/ttreeprocessor

Welcome to C++ Meta-
Programming Hell

• TTreeProcessor heavily utilizes C++ meta-programming in order to generate the majority of
the code at compile-time.

• TTreeProcessor itself is a template whose arguments are the branch types and a list of
kernels.

• Code should be read with a beer in one hand and coffee in the other.

• Goal: All kernels are inlined and compiler merges them effectively into a single common
block.

• No polymorphism. No type erasure.

• Intermediate std::tuple objects are eliminated.

• Even with the C++ template scaffolding, try to have equivalent performance as a plain-old
C loop.

• Mostly achieved! Will never be equivalent to a dedicated stream processing language, but .

Mappers and Filters
template<typename Tuple, typename... InputArgs>
class TTreeProcessorMapper : public TTreeMapper {
 public:
 TTreeProcessorMapper() {}
 TTreeProcessorMapper(const TTreeProcessorMapper&) = delete;
 TTreeProcessorMapper(TTreeProcessorMapper&&) = default;

 Tuple map (InputArgs...) const noexcept {};

 bool finalize() {return true;}

 typedef T output_type;
};

template<typename... InputArgs>
class TTreeProcessorFilter : public TTreeFilter {
 public:
 TTreeProcessorFilter() {}
 TTreeProcessorFilter(const TTreeProcessorFilter&) = delete;
 TTreeProcessorFilter(TTreeProcessorFilter&&) = default;

 bool filter(InputArgs...) const noexcept {};

 bool finalize() {return true;}
};

• Kernels must inherit from either a Mapper or a Filter class.
• Must be declared final to avoid virtual functions.
• A map takes the input from the previous step (InputArgs… parameter pack)

and return the input for the subsequent kernel as a std::tuple<>.
• filter and map are const: they must be thread-safe.
• A filter will return a boolean; if false, the streams discards the event.
• finalize is invoked after all streams are finished. Guaranteed to be invoked

in a single-threaded context.

Pre-packaged kernels
• Users are not expected to write their own kernels in the

most case.

• TTreeProcessor uses metaprogramming to generate built-in
kernels for common use cases:

• .map(fn) method generates a new Mapper kernel
given a lambda function, returning a new
TTreeProcessor object with the additional kernel
added to the template.

• .filter(fn) method does same but with a new Filter
kernel.

Silly Example
#include "TTreeProcessor.h"

int main(int argc, char *argv[])
{
 TFile *tf = TFile::Open(“myfile.root”);
 ROOT::TTreeProcessor<float, int, double> processor({"a", “b”, “c”});
 processor
 .filter([](float a, int b, double c)
 {return a <= 5;})
 .map([](float a, int b, double c) -> std::tuple<float, int>
 {return {a*a+1, a+b};})
 .process("T", {tf});
 return 0;
}

• In plain English:
• Process branches a, b, and c of type float, int, and double,

respectively, as found in Tree T and file myfile.root.
• Filter on events where the value of a is <= 5.
• Map a and b to a*a + 1 and a+b, respectively.

• Not particularly useful without side-effects!

Parallel Streams
• Idea: map and filter are thread safe and each event is data-

independent. Let’s process in parallel!

• Utilize TBB (already present in ROOT for IMT) to break the
streams into independent tasks.

• What’s the right “granularity” of event processing? Task per
event = too fine-grained. Task per file = too coarse-grained.

• Settled on a task per event cluster: typically results in one task
per every 20MB of data.

• Currently, must be enabled explicitly by using
parallelProcess method.

https://www.threadingbuildingblocks.org

https://www.threadingbuildingblocks.org

Vectorization
• If the kernels accept Vc-based vector types, then the processor will read out

multiple events at once and invoke the kernel chain with the vector equivalent of
the arguments.

• Kernels are invoked with a mask argument; this is a bitmask indicating which
events are currently valid.

• Filters no longer return a bool but rather an updated mask.

• Note: actual implementation still in-progress.

• Everything “looks” the same except for different types.

• Example use of the interface:

 ROOT::TTreeProcessor<float, int, double> processor({"a", "b", "c"});
 processor
 .map([](maskv m, floatv a, intv b, doublev c)
 -> std::tuple<int, float>
 {return {y, x};})
 .process(“T”, {tf1, tf2, tf3});

A Toy Framework
• The TTreeProcessor is in its infancy:

• Can generate new maps and filters on the chain via lambdas.

• Can write your own classes.

• Mostly been tested on unrealistically-trivial data formats.

• At least one example of how the finalize method works.

• Parallel and serial processing works; vectorization should be
done by Friday.

• Many places to contribute!

Thoughts on the future
• Many miles left to go to explore this idea:

• Tutorials, blogs, documentation to write. This presentation is the first time the processor has “seen
light of day”. Will move to the DIANA/HEP project group soon.

• Would like the library to be integrated in ROOT itself.

• Probably needs 5-10 kernels for common operations like histogramming and file I/O. Would like to
implement the majority of the DIANA-developed histogrammar language.

• Did we eliminate the boilerplate? Or trade it off for esoteric C++ features? What can be done?

• Python is honestly the better language for prototyping. Numba has demonstrated that a subset
python can JIT’d using LLVM, even when integrating inside a larger framework.

• Could we write TTreeProcessor kernels in Python and still JIT the entire infrastructure?

• How powerful is cling’s JIT? Could it do type deduction from the ROOT branches and
instantiate the correct TTreeProcessor template?

• Fundamentally, interested in faster/better ntuple processing because I want an improved IO stack. With
the TTreeProcessor, I hope we can increase processing rates in order to advantage of bulk IO APIs.

