

Synchrotron radiation background in the experiments

Francesco Collamati, Manuela Boscolo, Helmut Burkhardt ALBA, November 2016

The European Circular Collider Energy-Frontier Study (EuroCirCol) project received funding has from the European Union's Horizon 2020 research and innovation programme under grant No 654305. The information herein only reflects the views of its authors and the European Commission is not responsible for any use that may be made of the information.

Beam parameters

@ NAME	%05s	"TWISS"	
@ TYPE	%05s	"TWISS"	
@ SEQUENCE	%08s	"FCC_RING"	
@ PARTICLE	%06s	"PROTON"	
@ MASS	%le	0.938272046	
@ CHARGE	%le	1	
@ ENERGY	%le	50000	
@ PC	%le	49999.9999911965	
@ GAMMA	%le	53289.4486339626	
@ KBUNCH	%le	10600	
@ BCURRENT	%le	4.79502351385978e-05	
@ SIGE	%le	0	
@ SIGT	%le	0	
@ NPART	%le	10000000000	
@ EX	%le	4.12839700312689e-11	
@ EY	%le	4.12839700312689e-11	
@ ET	%le	1	
@ LENGTH	%le	100170.614199044	×
@ ALFA	%le	0.000101112451618679	
@ ORBIT5	%le	-0	
@ GAMMATR	%le	99.4483723902716	
@ Q1	%le	111.3103836898	-50
@ 02	%le	108.319735822487	
@ DQ1	%le	0.704766620174269	
@ DQ2	%le	2.53678571482396	-100
@ DXMAX	%le	15.1732173929165	
@ DYMAX	%le	14.9243069125305	
@ XCOMAX	%le	0.0137550431615374	-150
@ YCOMAX	%le	0.0137449902569815	
@ BETXMAX	%le	79717.6528109933	
@ BETYMAX	%le	80231.1846763345	-200
@ XCORMS	%le	0.000356215756222975	200
@ YCORMS	%le	0.000359222411426776	
@ DXRMS	%le	1.83029943789494	250
@ DYRMS	%le	0.736053497810314	-230
@ DELTAP	%le	0	
@ SYNCH_1	%le	10.1229915726241	000
@ SYNCH_2	%le	0.000600932166177875	-300
@ SYNCH_3	%le	5.73672334655025e-08	
@ SYNCH_4	%le	9.2355347923506e-08	
@ SYNCH_5	%le	1.16651985634425e-09	

- 50 TeV protons
- Optics version:
 - fcc_hh_v6_45

Beam parameters

	FCC-hh Baseline	FCC-hh Ultimate
Luminosity L [10 ³⁴ cm ⁻² s ⁻¹]	5	20-30
Background events/bx	170 (34)	<1020 (204)
Bunch distance Δt [ns]	25	5 (5)
Bunch charge N [10 ¹¹]	1 (0.2)
Fract. of ring filled η_{fill} [%]	8	30
Norm. emitt. [µm]	2.2(0.44)
Max ξ for 2 IPs	0.01 (0.02)	0.03
IP beta-function β [m]	1.1	0.3
IP beam size σ [µm]	6.8 (3)	3.5 (1.6)
RMS bunch length σ_z [cm]		8
Crossing angle [$\sigma\Box$]	12	Crab. Cav.
Turn-around time [h]	5	4

source: FCCweek16

Beam parameters

parameter	l	FCC-hh	SPPC	HE-LHC* *tentative	(HL) LHC
collision energy cms [TeV]		10 0	71.2	>25	14
dipole field [T]		1 6	20	16	8.3
circumference [km]		10 0	54	27	27
# IP	2 main & 2		2	2 & 2	2 & 2
beam current [A]		0.5	1.0	1.12	(1.12) 0.58
bunch intensity [1011]	1	1 (0.2)	2	2.2	(2.2) 1.15
bunch spacing [ns]	25	25 (5)	25	25	25
beta* [m]	1.1	0.3	0.75	0.25	(0.15) 0.55
luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	20 - 30	12	>25	(5) 1
events/bunch crossing	1 70	<1020 (204)	4 0 0	850	(135) 27
stored energy/beam [GJ]		8.4	6.6	1.2	(0.7) 0.36
synchrotr. rad. [W/m/beam]		30	58	3.6	(0.35) 0.18

source: FCCweek16

• The synchrotron radiation **cone** is very **narrow**:

$$\gamma_p = \frac{E_p}{m_p} = \frac{50TeV}{938MeV} \sim 5 \times 10^4$$
$$\frac{1}{\gamma_p} \sim 1.9 \times 10^{-5} rad \sim 10^{-3} deg$$
$$\theta_{BEND} = 3 \times 10^{-4} rad$$

 We assume the SR to be "pencil beam"-like (lying on horizontal plane only)

• The synchrotron radiation **cone** is very **narrow**:

- We assume the SR to be "pencil beam"-like (lying on horizontal plane only)
- Critical energy in zone of interest is around 1 keV (Emean~0.3keV)
 - All photons hitting the pipe are locally absorbed without reflection

acceleration

• The synchrotron radiation **cone** is very **narrow**:

$$\gamma_p = \frac{E_p}{m_p} = \frac{50TeV}{938MeV} \sim 5 \times 10^4$$
$$\frac{1}{\gamma_p} \sim 1.9 \times 10^{-5} rad \sim 10^{-3} deg$$
$$\theta_{BEND} = 3 \times 10^{-4} rad$$

- We assume the SR to be "pencil beam"-like (lying on horizontal plane only)
- Critical energy in zone of interest is around 1 keV (Emean~0.3keV)
 - All photons hitting the pipe are locally absorbed without reflection
- Only particles entering the TAS can in principle reach the experiments
 - ➡ We focus on particles entering the TAS

 $\pm \frac{1}{2}$ opening angle

acceleration

BEAM PIPE SCHEME FROM MADX

•4 "soft" (~4T) near the IP

F. Collamati - EuroCirCol meeting - 7-9 November 2016 - ALBA Synchrotron

6

• N_v/proton=0.1795

• ETOT=6.34 TeV

• P=32 W

• N_v/proton=0.1795

• ETOT=5.28 TeV

• P=27 W

First approach: MDISim

MDISim TOOLKIT

- Developed by *Helmut Burkhardt* (CERN), is a set of C++/Root classes that allow to:
 - Run Madx on the desired lattice of the FCC
 - Read Madx output, plot the lattice
 - Calculate Synchrotron Radiation (Power Radiated, Critical Energy..) and plot it over the geometry using Root's TEve

8

 Import geometry and SR in Geant4 to perform full simulation

linł

PHOTON DISTRIBUTION

- Neglecting the aperture of the SR cone..
- SR Photons are emitted in an area of θ
 - same angle as the bending magnet!
 - we refer to this area as "cone"
- We assume photons are emitted isotropically in this area

PHOTON DISTRIBUTION

- Neglecting the aperture of the SR cone..
- SR Photons are emitted in an area of θ
 - same angle as the bending magnet!
 - we refer to this area as "cone"
- We assume photons are emitted isotropically in this area

"How many SR photons can physically enter the TAS aperture?"

12

"How many SR photons can physically enter the TAS aperture?"

"How many SR photons can physically enter the TAS aperture?"

"How many SR photons can physically enter the TAS aperture?"

MDISIM OUTPUT

iele	NAME K	EYWORD	5	L	Angle	Ecrit ngamB	end rho	В	BETX	SIGX	divx	Power	frac>10MeV	ngam*npart Egantoi	t Errean
				m	mrad	keV	n i	T		mm	mrad	- KW		GeV	keV
21	MBXA.A4LA.H	SBEND	231.3	12.5	6.3199	1.15 0.	18 39079.0	4.27 2	2.46c+64	1.01	0.00142	0.0322	Θ	1.8c+10 6.34c+03	0.353
23	MBXA, B4LA, H	SBEND	245.3	12.5	6.3199	1.15 0.	18 39079.0	4.27 2	2.36e+64	0.987	0.00142	0.0322	Θ	1.8e+10 6.34e+03	0.353
29	MBRD,A4LA,H1	SBEND	426.9	15	-6.3199	0.955 0.	18 46894.B	-3.56 1	L.29e+64	0.73	0.00142	0.0268	Θ	1.8e+10 5.28e+03	0.294
31	MBRD.B4LA.H1	SBEND	443.4	15	-0.3199	0.955 0.	18 46894.8	-3.56 1	1.21e+64	0.707	0.00142	0.0268		1.8e+10 5.28e+03	0.294
51	MBS.A8LA.H1	SBEND	767.1	13.4	1.28	4.28 0.7	18 10465.5	15.9	61.1	0.0502	0.000877	0.481	9	7.18e+16 9.46e+04	1.32

WITHOUT Crossing Angle WITH Crossing Angle S Β Νγτοτ Ρ Ecrit **E**TAS **f**tas **E**tas PTAS **f**tas PTAS el. (m) **(T)** (keV) (%) (%) (J) (W) (J) (W) (J) (W) 1,8E+10 32 231 -4,3 40 12,8 1,146 4,0E-07 77,0 7,7E-07 24,6 B1a 1,8E+10 235 -4,3 32 B1b 1,146 0 1,3E-07 427 3,6 0,955 1,8E+10 15,3 6,8E-08 B₂a 4,1 8,0 1,2 27 B₂b 443 3,6 0,955 1,8E+10 27 0 26W TOT TOT 767 15,9 4,279 7,2E+10 480 **B3** 17W

MDISIM OUTPUT

iele	NAME	KEYWORD	5	L	Angle	Ecrit ng	;amBend	rho	В	BETX	SIGX	divx	Power	frac>10MeV	ngam*npart Egamtor	t Errean
				m	mrad	keV			Т		mm	mrad	- KW		GeV	keV
21	MBXA.A4LA.H	SBEND	231.3	12.5	6.3199	1.15	0.18	39079.0	4.27	2.46c+64	1.01	0.00142	0.0322	Θ	1.8c+10 6.34c+03	0.353
23	MBXA, B4LA, H	SBEND	245.3	12.5	6.3199	1.15	0.18	39079.9	4.27	2.36e+64	0.987	0.00142	0.0322	Θ	1.8e+10 6.34e+03	0.353
29	MBRD,A4LA,H1	SBEND	426.9	15	-6.3199	0.955	0.18	46894.8	-3.56	1.29e+64	0.73	0.00142	0.0268	9	1.8e+10 5.28e+03	0.294
31	MBRD, B4LA, H1	SBEND	443.4	15	-0.3199	0.955	0.18	46894.8	-3.56	1.21e+04	0.707	0.00142	0.0268		1.8e+10 5.28e+03	0.294
51	MBS.A8LA.H1	SBEND	767.1	13.4	1.28	4.28	0.718	10468.8	15.9	61.1	0.0502	0.000877	0.481	9	7.18e+10 9.46e+04	1.32

WITHOUT Crossing Angle WITH Crossing Angle S Β Νγτοτ Ρ Ecrit **f**tas **E**TAS **E**tas PTAS **f**tas PTAS el. (m) **(T)** (keV) (%) (%) (W) (J) (W) (J) (W) (J) 1,8E+10 32 231 -4,3 40 12,8 1,146 4,0E-07 77,0 7,7E-07 24,6 B1a 1,8E+10 32 235 -4,3 0 B1b 1,146 3,6 1,3E-07 427 0,955 1,8E+10 27 15,3 6,8E-08 B₂a 4,1 8,0 1,2 B₂b 443 3,6 0,955 1,8E+10 27 0 26W TOT TOT 767 15,9 4,279 7,2E+10 480 **B3** 17W

FOR REFERENCE

Second approach: SynRad

Synrad Software

- Synrad is a software developed by *Roberto Kersevan* able to generate and trace photons to calculate flux and power distribution on a surface caused by Synchrotron radiation
- Needs as input the geometry (in CAD-like format), the magnetic fields and the beam parameters

link

Synrad Simulation

- Roberto Kersevan used the Madx output files (run with MDISim) to:
 - **create the beam**, taking position, displacement, emittance, coupling and all the relevant parameters
 - create the geometry, using the apertures provided in the Madx optics file and joining them with the ones added "by hand" (eg for TAS)
 - he added to the geometry some elements not included in the optics file to resolve some "unrealistic" configurations originating from the mere optics files
 - ➡ recombination chamber, beam pipe size discontinuities...

R. Kersevan modifications to the geometry

For recombination chamber and beam pipe size he used as reference LHC, making a sort of "projection"

This modification has a pretty deep impact on the power entering the TAS!

 So I evaluated with SynRad the power entering the TAS from the various magnetic elements in both cases with and without the Crossing Angle

• Being a Monte Carlo program, Synrad is able to simulate even the contribution to Synchrotron Radiation due to **quadrupoles**!

19

(W) MDISim SynRad MDISim SynRad B2b 0 0 0 0 0 B2a 4,1 0,08 1,2 1E-03 B1b 0 0 0 4E-05 B1a 12,8 5,02 24,6 5,75 Q3 0 1,24 Q2b 0,139 2,19 Q2a 0 1E-04 Q1 0,0113 e-6 TOT 16,9 5,3 25,8 9,2	Power	No Cross	ing Angle	Crossing Angle				
B2b 0 0 0 0 B2a 4,1 0,08 1,2 1E-03 B1b 0 0 0 4E-05 B1a 12,8 5,02 24,6 5,75 Q3 0 1,24 Q2b 0,139 2,19 Q2a 0,0113 e-6 TOT 16,9 5,3 25,8 9,2	(W)	MDISim	SynRad	MDISim	SynRad			
B2a 4,1 0,08 1,2 1E-03 B1b 0 0 0 0 4E-05 B1a 12,8 5,02 24,6 5,75 Q3 — 0 — 1,24 Q2b — 0,139 — 2,19 Q2a — 0,0113 — e-6 TOT 16,9 5,3 25,8 9,2	B2b	0	0	0	0			
B1b 0 0 0 0 4E-05 B1a 12,8 5,02 24,6 5,75 Q3 0 1,24 Q2b 0,139 2,19 Q2a 0 1E-04 Q1 0,0113 e-6 TOT 16,9 5,3 25,8 9,2 Q1 Q2a Q2b Q3 B1a B1b B2a B A A A A A A A A A A A Q1 Q2a Q2b Q3 B1a B1b A A A A A A A Q1 Q2a Q2b Q3 B1a B1b A	B2a	4,1	0,08	1,2	1E-03			
B1a 12,8 5,02 24,6 5,75 Q3 0 1,24 Q2b 0,139 2,19 Q2a 0 1E-04 Q1 0,0113 e-6 TOT 16,9 5,3 25,8 9,2	B1b	0	0	0	4E-05			
Q3 — 0 — 1,24 Q2b — 0,139 — 2,19 Q2a — 0 — 1E-04 Q1 — 0,0113 — e-6 TOT 16,9 5,3 25,8 9,2 Q1 Q2a Q2b Q3 B1a B1b Q1 Q2a Q2b Q3 B1a B1b Q4 Q2a Q2b Q3 B1a B1b Q1 Q2a Q2b Q3 B1a B1b Q4 Q2a Q2b Q3 B1a B1b Q4 Q2a Q2b Q3 B1a B1b Q4 </th <th>B1a</th> <th>12,8</th> <th>5,02</th> <th>24,6</th> <th>5,75</th>	B1a	12,8	5,02	24,6	5,75			
Q2b — 0,139 — 2,19 Q2a — 0 — 1E-04 Q1 — 0,0113 — e-6 TOT 16,9 5,3 25,8 9,2 Q1 Q2a Q2b Q3 B1a B1b B2a B Q1 Q2a Q2b Q3 B1a B1b B2a B Q1 Q2a Q2b Q3 B1a B1b B2a B Q1 Q2a Q2b Q3 B1a B1b B1a B1b Q1 Q2a Q2b Q3 B1a B1b B1a B1b Q1 Q2a Q2b Q3 B1a B1b B1a B1b Q1 Q2a Q2b Q3 B1a B1b S1 Q1 Q2a Q2b Q3 Q3 Q3 Q3 Q4	Q3		0		1,24			
Q2a — 0 — 1E-04 Q1 — 0,0113 — e-6 TOT 16,9 5,3 25,8 9,2 Q1 Q2a Q2b Q3 B1a B1b B2a B out gat	Q2b		0,139		2,19			
Q1 — 0,0113 — e-6 TOT 16,9 5,3 25,8 9,2 Q1 Q2a Q2b Q3 B1a B1b B2a B safe	Q2a		0		1E-04			
TOT16,95,325,89,2Q1Q2aQ2bQ3B1aB1bB2aBset <th>Q1</th> <th></th> <th>0,0113</th> <th></th> <th>e-6</th>	Q1		0,0113		e-6			
Q1 Q2a Q2b Q3 B1a B1b B2a B B2a B B2	ТОТ	16,9	5,3	25,8	9,2			
Balt Balt von Belgelt om Balt Balt Balt Balt Balt Balt Balt Balt	Q1	Q2a Q2b Q3	B1a B1b		B2a B2b			
ORIA ORIANS	out out the set of the	t we set we set we	at at at at at	A LAND	En an			
			THE ORIGINAL OF THE ORIGINAL O					
82 116 153 196 233 427 4 427 4	82	116 153	196 233		427 475			

Summarizing the two approaches

· MDISim

- Pros:
 - very fast and flexible tool (e.g. in case of new optics/ geometry...)
 - easy interface with Geant4 for full simulation
- Cons:
 - Solid angle evaluation suffers of substantial uncertainties due to graphical technique adopted
 - no quadrupoles

SynRad:

- Pros:
 - very precise and accurate simulation
 - quadrupoles
- Cons:
 - requires great work to build geometry
 - not flexible (e.g. in case of new optics/geometry...)

Conclusions

- Synchrotron Radiation emitted in the last bends (500m from the IP) is not an issue:
 - The emitted Power is IN TOTAL ~100 W (=upper limit in all beam conditions)
 - The fraction of this power entering the TAS is ~10 W with/without crossing angle
 - Orbit correctors contribute for ~ W (~10x lower than bends)
 - The emitted photons, even if numerous (~10¹⁰ per bunch), have a critical energy of 1keV
 - They are **safely stopped** within the pipe (no full simulation needed!)
 - even in a non-collision scheme (beam separation at IP) we can use as a reference (extreme) value the 100 W limit → safe limit

backup

WITHOUT CROSSING ANGLE

10cm

Synchrotron radiation cone: θ=0.3 mrad

TAS acceptance cone: α=atg(1.82/39400)=0.05 mrad Solid Angle Acceptance: $f=\alpha/\theta=15.3\%$

Synchrotron radiation cone: $\theta=0.3$ mrad

Synchrotron radiation cone: θ=0.3 mrad

TAS acceptance cone: α=atg(1.82/39400)=0.05 mrad Solid Angle Acceptance: $f=\alpha/\theta=15.3\%$

П

WITH CROSSING ANGLE

Synchrotron radiation cone: θ=0.3 mrad

TAS acceptance cone: α=atg(1.68/39400)=0.04 mrad Solid Angle Acceptance: $f=\alpha/\theta=8\%$

