Lepton-flavor Violation in meson decays

J. Martin Camalich

FPCP 2017

June 5th 2017

Lepton-flavor symmetries in the SM

- SU(3)_ℓ × SU(3)_e × U(1)_L × U(1)_{e-ℓ} fulfilled by Gauge interactions ...
 ... but broken by the Yukawas in the SM
- Upon diagonalization of mass matrix $U(1)_{\tau} \times U(1)_{\mu} \times U(1)_{e}$ survives*

* Up to tiny effects in charged-lepton processes produced by neutrino masses

- Interactions in the SM are charged-lepton universal up to ...
 - Higgs mediated (Negligible)
 - Winematic effects (process dependent)
- ... and charged-lepton flavor symmetric

Lepton-universality and charged-lepton-flavor-conservation are a hallmark of the SM

Many experimental tests: $\mu \to e\gamma$, $\tau \to \mu\gamma$, $\mu \to 3e$, $Z \to \ell\ell$, $W \to \ell\nu$, $\pi \to \ell\nu$, $K \to \ell\nu$, $K \to \pi\ell\nu \tau \to \ell\nu\nu$,... Lepton Univ. violating new-physics in *B* CC decays? $R_{D(*)}$ anomalies

$$egin{aligned} & \mathcal{B}_{\mathcal{D}^{(*)}} = rac{\mathcal{B}(ar{B} o \mathcal{D}^{(*)} au^- ar{
u})}{\mathcal{B}(ar{B} o \mathcal{D}^{(*)} \ell^- ar{
u})} & ext{where} \quad \ell = oldsymbol{e}, \mu \end{aligned}$$

• *Excesses* reported by 3 different experiments in 2 channels at $\sim 4\sigma$

15% enhancement of the tau SM amplitude:

LUV in
$$b \to c \tau \nu$$

 $\frac{\Lambda}{g} = \frac{v}{\sqrt{|V_{cb}| \times 0.15}} \sim 3 \text{ TeV}$

J. Martin Camalich (CERN)

Lepton Univ. violating new-physics in *B* FCNC decays? $R_{K^{(*)}}$ anomalies

$$R_{\mathcal{K}^{(*)}} = \frac{\mathcal{B}(\bar{B} \to \mathcal{K}^{(*)}\mu^+\mu^-)}{\mathcal{B}(\bar{B} \to \mathcal{K}^{(*)}e^+e^-)}$$

- Skewed μ -to-*e* ratios reported by LHCb in 2 channels at $\sim 4\sigma$
 - Anomalies in muonic BRs and angular observables: Global analyses ~ 5σ
 - 25% deficit (enhancement) of the SM muon (electron) amplitude:

LUV in
$$b
ightarrow s\ell\ell$$

 $rac{\Lambda}{g} = rac{v}{\sqrt{|V_{ts}||V_{tb}| imes rac{lpha_{em}}{4\pi}}} \sim 30 \; ext{TeV}$

LUV in b ightarrow c au u decays

EFT of new-physics in $b \rightarrow c \tau \nu$

• Low-energy effective Lagrangian (no RH ν)

$$\mathcal{L}_{\text{eff}}^{\ell} = -\frac{G_F V_{cb}}{\sqrt{2}} \left[(1 + \epsilon_L^{\ell}) \bar{\ell} \gamma_\mu (1 - \gamma_5) \nu_\ell \cdot \bar{c} \gamma^\mu (1 - \gamma_5) b + \epsilon_R^{\ell} \bar{\ell} \gamma_\mu (1 - \gamma_5) \nu_\ell \bar{c} \gamma^\mu (1 + \gamma_5) b \right]$$

 $+\bar{\ell}(1-\gamma_5)\nu_\ell\cdot\bar{c}[\epsilon_S^\ell-\epsilon_P^\ell\gamma_5]b+\epsilon_T^\ell\,\bar{\ell}\sigma_{\mu\nu}(1-\gamma_5)\nu_\ell\cdot\bar{c}\sigma^{\mu\nu}(1-\gamma_5)b]+\text{h.c.},$

Wilson coefficients: ϵ_{Γ} decouple as $\sim \nu^2/\Lambda_{NP}^2$

- Matching to high-energy Lagrangian SMEFT
 - ► Symmetry relations for e_Γ
 - ★ In charged-currents ϵ_R^{ℓ} :

$$\mathcal{O}_{Hud} = \frac{i}{\Lambda_{\rm NP}^2} \left(\tilde{H}^{\dagger} D_{\mu} H \right) \left(\bar{u}_R \gamma^{\mu} d_R \right)$$

• RHC is lepton universal: $\epsilon_R^{\ell} \equiv \epsilon_R + \mathcal{O}(\frac{v^4}{\Lambda_{NP}^4}) \Rightarrow$ Cannot explain LUR $R_{D^{(*)}}!$

Down to **4** operators to explain R_{D^*} : ϵ_L , ϵ_S , ϵ_P , ϵ_T

The constraint of the B_c-lifetime

• $B \rightarrow D^* \tau \nu$ receives a contribution from ϵ_P

$$\epsilon_{P} \langle D^{*}(k,\epsilon) | \bar{c} \gamma_{5} b | \bar{B}(p) \rangle \!=\! - \frac{2 \epsilon_{P} m_{D^{*}}}{m_{b} + m_{c}} A_{0}(q^{2}) \epsilon^{*} \cdot q$$

• $B_c \rightarrow \tau \nu$ also receives a helicity-enhanced contribution from $\epsilon_P!$

$$\frac{\operatorname{Br}(B_{c}^{-} \to \tau \bar{\nu}_{\tau})}{\operatorname{Br}(B_{c}^{-} \to \tau \bar{\nu}_{\tau})^{\mathrm{SM}}} = \left|1 + \epsilon_{L} + \frac{m_{B_{c}}^{2}}{m_{\tau}(m_{b} + m_{c})} \epsilon_{P}\right|^{2}$$

- Use the lifetime of B_c
 - Very high experimental precision (1.5%):

 $au_{B_c} = 0.507(8)~{
m ps}$

• QCD: "Most of the B_c lifetime comes from $\bar{c} \rightarrow \bar{s}$ ($\sim 65\%$) and $b \rightarrow c$ ($\sim 30\%$)"

Bigi PLB371 (1996) 105, Beneke et al. PRD53(1996)4991,...

$$au_{B_c}^{
m OPE} = 0.52^{+0.18}_{-0.12}~{
m ps}$$

LUV in B decays

The constraint of the B_c-lifetime

• $B \rightarrow D^* \tau \nu$ receives a contribution from ϵ_P

$$\epsilon_{\textbf{P}} \ \langle D^*(k,\epsilon) | \bar{c} \gamma_5 b | \bar{B}(p) \rangle {=} {-} \frac{2 \epsilon_{\textbf{P}} \ m_{D^*}}{m_b {+} m_c} A_0(q^2) \epsilon^* {\cdot} q$$

• $B_c \rightarrow \tau \nu$ also receives a helicity-enhanced contribution from ϵ_P !

 τ_{B_c} makes **highly implausible ANY** "scalar solution" (e.g. 2HDM) to the R_{D^*} anomaly!

New-physics solutions with challenging UV completions

• Left-handed $\epsilon_L = 0.13$

SMEFT operators: $Q_{\ell q}^{(1)} = \frac{1}{\Lambda^2} (\bar{Q}_L \gamma^{\mu} Q_L) (\bar{L}_L \gamma_{\mu} L_L), \qquad Q_{\ell q}^{(3)} = \frac{1}{\Lambda^2} (\bar{Q}_L \gamma^{\mu} \vec{\tau} Q_L) \cdot (\bar{L}_L \gamma_{\mu} \vec{\tau} L_L)$

If coupled predominantly to 3rd generations

- Need non-trivial flavor str. Crivellin *et al.* arXiv:1703.09226 • Tensor $\epsilon_T = 0.38$ (and scalars)
 - EW corrections: Large mixing tensor into scalars

$$\begin{pmatrix} w_{ledq} \\ w_{tequ} \\ w_{tequ}^{(a)} \\ w_{tequ}^{(a)} \end{pmatrix}_{(\mu = m_Z)} = \begin{pmatrix} 1.19 & 0. & 0. \\ 0. & 1.20 & -0.185 \\ 0. & -0.00381 & 0.959 \end{pmatrix} \begin{pmatrix} w_{ledq} \\ w_{tequ} \\ w_{tequ}^{(a)} \\ w_{tequ}^{(a)} \end{pmatrix}_{(\mu = 1 \text{ TeV})}$$

Gonzalez-Alonso, JMC & Mimouni arXiv: 1706.00410

Tensors never come alone: Important for the pheno!

UV models should be discovered soon at the LHC!

J. Martin Camalich (CERN)

LUV in B decays

Warning Radiatively LUV in τ and Z decays!

Ferruglio et al.PRL118 (2017), 011801

Discriminating power of kinematic distributions $(\tau^- \rightarrow \ell^- \bar{\nu}_\ell \nu_\tau)$

Alonso, Kobach, JMC, PRD94(2016)no.9,094021; Alonso, JMC, Westhoff, PRD95(2017)no.9,093006

• Integrate analytically the τ and ν 's angular phase-space:

$$\frac{a^3 \Gamma_5}{dq^2 dE_\ell d(\cos \theta_\ell)} = \mathcal{B}[\tau_\ell] \mathcal{N} \left[l_0(q^2, E_\ell) + l_1(q^2, E_\ell) \cos \theta_\ell + l_2(q^2, E_\ell) \cos \theta_\ell^2 \right]$$

Angular distribution help discriminate signal, normalization, NP

J. Martin Camalich (CERN)

LUV in $b ightarrow s\ell\ell$ decays

Effective field theory approach to $b \rightarrow s\ell\ell$ decays

• CC (Fermi theory):

▶ New-Physics also in C_i or e.g. \mathcal{O}'_i obtained $P_L \rightarrow P_R$ in $\bar{s}_L b$

- Light fields active at long distances Nonperturbative QCD!
 - ★ Factorization of scales m_b vs. Λ_{QCD} HQEFT, QCDF, SCET,...

The complex example: $B \rightarrow K^{(*)}\ell\ell$

$$\frac{q^{(4)}\Gamma}{dq^2 d(\cos \theta_I) d(\cos \theta_k) d\phi} = \frac{9}{32\pi} (l_1^8 \sin^2 \theta_k + l_1^c \cos^2 \theta_k)$$

$$+ (l_2^8 \sin^2 \theta_k + l_2^c \cos^2 \theta_k) \cos 2\theta_I + l_3 \sin^2 \theta_k \sin^2 \theta_I \cos 2\phi$$

$$+ l_4 \sin 2\theta_k \sin 2\theta_I \cos \phi + l_5 \sin 2\theta_k \sin 2\theta_I \cos \phi + l_6 \sin^2 \theta_k \cos \theta_I$$

$$+ l_7 \sin 2\theta_k \sin \theta_I \sin \phi + l_8 \sin 2\theta_k \sin 2\theta_I \sin \phi + l_9 \sin^2 \theta_k \sin^2 \theta_I \sin 2\phi_I$$

• Anomalies in the angular observables ...

$$P_5' = rac{l_5}{2\sqrt{-l_{2s}l_{2c}}}$$

Cancel leading theory uncertainties

New physics? $\delta C_9^\mu \simeq -1$ Descotes-Genon *et al.* PRD88,074002

Interpretation blurred by hadronic uncertainties

Anatomy of the amplitude in a nutshell

• Helicity amplitudes $\lambda = \pm 1, 0$

$$H_{V}(\lambda) = -iN\left\{\overbrace{\left[C_{9}\tilde{V}_{L\lambda} + \frac{m_{B}^{2}}{q^{2}}h_{\lambda}\right]}^{C_{9}\text{ff}} - \frac{\hat{m}_{b}m_{B}}{q^{2}}C_{7}\tilde{T}_{L\lambda}\right\},\$$
$$H_{A}(\lambda) = -iNC_{10}\tilde{V}_{L\lambda}$$

• Hadronic form factors: 7 independent q²-dependent nonperturbative functions

$$h_\lambda \propto \int d^4 y e^{i q \cdot y} \langle ar{K}^* | T \{ j^{ ext{em,had},\mu}(y), \mathcal{O}_{1,2}(0) \} | ar{B}
angle$$

• Charm and \mathcal{O}_9 are tied up by renormalization Only C_9^{eff} is observable!

J. Martin Camalich (CERN)

The lepton-universality ratios...

- QCD interactions are lepton universal*
 - * EM corrections are lepton-dependent but at \sim % level Bordone et al. EPJC76(2016),8,440
- ... In $B \to K \ell \ell$

$$\frac{d\Gamma_{K}}{dq^{2}} = \mathcal{N}_{K} |\vec{k}|^{3} f_{+}(q^{2})^{2} \left(\left| C_{10}^{\ell} + C_{10}^{\ell} \right|^{2} + \left| C_{9}^{\ell} + C_{9}^{\prime} \ell + 2\frac{m_{b}}{m_{B} + m_{K}} C_{7} \frac{f_{T}(q^{2})}{t_{+}(q^{2})} - 8\pi^{2} h_{K} \right|^{2} \right) + \mathcal{O}(\frac{m_{\ell}^{4}}{q^{4}}) + \dots$$

• ... in $B \to K^* \ell \ell$

$$\frac{d\Gamma_{K^*}}{dq^2} = \frac{d\Gamma_{\perp}}{dq^2} + \frac{d\Gamma_0}{dq^2}$$

$$\frac{d\Gamma_0}{dq^2} = \mathcal{N}_{K^*0} \left| \vec{k} \right|^3 \frac{V_0(q^2)^2}{\left(\left| C_{10}^{\ell} - C_{10}^{\prime \ell} \right|^2 + \left| C_9^{\ell} - C_9^{\prime \ell} + \frac{2m_b}{m_B} C_7 \frac{T_0(q^2)}{V_0(q^2)} - 8\pi^2 h_{K^*0} \right|^2 \right) + \mathcal{O}\left(\frac{m_\ell^2}{q^2} \right)$$

$$\frac{d\Gamma_{\perp}}{dq^{2}} = \mathcal{N}_{K^{*} \perp} |\vec{k}| q^{2} V_{-}(q^{2})^{2} \left(\left| C_{10}^{\ell} \right|^{2} + \left| C_{9}^{\prime \ell} \right|^{2} + \left| C_{9}^{\prime \ell} \right|^{2} + \left| C_{9}^{\ell} + \frac{2m_{b}m_{B}}{q^{2}} C_{7} \frac{T_{-}(q^{2})}{V_{-}(q^{2})} - 8\pi^{2} h_{K^{*} \perp} \right|^{2} \right) + \mathcal{O}\left(\frac{m_{\ell}^{2}}{q^{2}} \right)$$

Wilson coefficients in the SM $C_9^{\rm SM}(m_b) \simeq -C_{10}^{\rm SM} = +4.27$ $C_7^{\rm SM}(m_b) = -0.333$

New physics in muons

Geng, Grinstein, Jäger, Martin Camalich, Ren, Shi, arXiv: 1704.05446

- Nodes indicate steps of $\Delta C^{\mu} = +0.5$
 - ▶ Primed operators $C'_{9,10}$: Monotonically decreasing dependence $R_{K^*}(R_K)!$
- New physics in electrons~ mirror image of above (see D'Amico et al. 1704.05438)

SM; $\delta C_9^{\mu} = -1$; $\delta C_{10}^{\mu} = 1$; $\delta C_9^{\prime \mu} = -1$; $\delta C_L^{\mu} = -0.5$

D'Amico et al. 1704.05438

Obs.	Expt.	SM	$\delta C_L^\mu = -0.5$	$\delta C_9^{\mu} = -1$	$\delta C^{\mu}_{10} = 1$	$\delta C_9^{\prime \mu} = -1$
$R_K [1, 6] \text{GeV}^2$	0.745 ± 0.090	$1.0004^{+0.0008}_{-0.0007}$	$0.773^{+0.003}_{-0.003}$	$0.797^{+0.002}_{-0.002}$	$0.778^{+0.007}_{-0.007}$	$0.796\substack{+0.002\\-0.002}$
R_{K^*} [0.045, 1.1] GeV ²	0.66 ± 0.12	$0.920\substack{+0.007\\-0.006}$	$0.88^{+0.01}_{-0.02}$	$0.91\substack{+0.01 \\ -0.02}$	$0.862^{+0.016}_{-0.011}$	$0.98^{+0.03}_{-0.03}$
R_{K^*} [1.1, 6] GeV ²	0.685 ± 0.120	$0.996\substack{+0.002\\-0.002}$	$0.78^{+0.02}_{-0.01}$	$0.87^{+0.04}_{-0.03}$	$0.73^{+0.03}_{-0.04}$	$1.20^{+0.02}_{-0.03}$
R_{K^*} [15, 19] GeV ²	-	$0.998\substack{+0.001\\-0.001}$	$0.776^{+0.002}_{-0.002}$	$0.793^{+0.001}_{-0.001}$	$0.787^{+0.004}_{-0.004}$	$1.204^{+0.007}_{-0.008}$

Very clean observables!

• Warning: Central Value at ultralow- q^2 is difficult to accommodate with UV physics

Fit 1: Only LUR

• We chose μ -specific for reference (*e*-specific obtained by $\delta C_i^e \simeq \delta C_i^{\mu}$)

- ▶ $\chi^2_{\text{SM,min}} = 19.51$ (3 d.o.f) which corresponds to a *p*-value of 2 × 10⁻⁴ (3.7 σ) ▶ **Requires** C_{10} : $\chi^2_{\text{min}}/\text{d.o.f.} \simeq 1$
 - Fit slighty tensed up by ultralow R_{K^*} bin

J. Martin Camalich (CERN)

LUV in B decays

Fit 2: LUR+ $B_s \rightarrow \mu \mu$

• Need to assume NP is μ -specific

Coeff.	best fit	χ^2_{min}	p-value	SM exclusion $[\sigma]$	1σ range	3σ range	
δC_9^{μ}	-1.64	5.65	0.130	3.87	[-2.31, -1.12]	[<-4, -0.31]	
δC_{10}^{μ}	0.91	4.98	0.173	3.96	[0.66, 1.18]	[0.20, 1.85]	
δC_L^{μ}	-0.61	3.36	0.339	4.16	[-0.78, -0.46]	[-1.14, -0.16]	
Coeff.	best fit	$\chi^2_{\rm min}$	p-value	SM exclusion $[\sigma]$	parameter ranges		
$(\delta C_{9}^{\mu}, \delta C_{10}^{\mu})$	(-0.76, 0.54)	3.31	0.191	3.76	$C_9^{\mu} \in [-1.50, -0.16]$	$C_{10}^{\mu} \in [0.18, 0.92]$	

- **Deviation of the SM**: *p*-value of 3.7×10^{-4} (3.6 σ)
- Best fit suggests a leptonic left-handed scenario δC_L^{μ}

Fit 3: Global fit

Coeff.	best fit	$\chi^2_{\rm min}$	p-value	SM exclusion $[\sigma]$	1σ range	3σ range	
δC_9^{μ}	-1.37	61.98 [64 dof]	0.548	4.37	[-1.70, -1.03]	[-2.41, -0.41]	
δC_{10}^{μ}	0.60	71.72 [64 dof]	0.237	3.06	[0.40, 0.82]	[-0.01, 1.28]	
δC_L^{μ}	-0.59	63.62 [64 dof]	0.490	4.18	[-0.74, -0.44]	[-1.05, -0.16]	
Coeff.	best fit	$\chi^2_{\rm min}$	p-value	SM exclusion $[\sigma]$	parameter ranges		
$(\delta C_9^\mu, \delta C_{10}^\mu)$	(-1.15, 0.28)	60.33 [63 dof]	0.572	4.17	$C_9^{\mu} \in [-1.54, -0.81]$	$C_{10}^{\mu} \in [0.06, 0.50]$	

- The best fit is now driven by δC_9^{μ} !
- However: Remember that C₉ is subject to severe hadronic uncertainties!
- Results in the $(\delta C_9^{\mu}, \delta C_{10}^{\mu})$ plane

Altmannshofer et al. arXiv:1704.05435

Fit 3: Global fit

Coeff.	best fit	$\chi^2_{\rm min}$	p-value	SM exclusion $[\sigma]$	1σ range	3σ range
δC_9^{μ}	-1.37	61.98 [64 dof]	0.548	4.37	[-1.70, -1.03]	[-2.41, -0.41]
δC_{10}^{μ}	0.60	71.72 [64 dof]	0.237	3.06	[0.40, 0.82]	[-0.01, 1.28]
δC_L^{μ}	-0.59	63.62 [64 dof]	0.490	4.18	[-0.74, -0.44]	[-1.05, -0.16]
Coeff.	best fit	$\chi^2_{\rm min}$	p-value	SM exclusion $[\sigma]$	parameter ranges	
$(\delta C_9^{\mu}, \delta C_{10}^{\mu})$	(-1.15, 0.28)	60.33 [63 dof]	0.572	4.17	$C_9^{\mu} \in [-1.54, -0.81]$	$C_{10}^{\mu} \in [0.06, 0.50]$

• Different treatment of hadronic uncertainties: Significance can change $3\sigma - 7\sigma!$

Ciuchini et al. arXiv:1704.05447

• One group claims $\gtrsim 5\sigma$ consistently in all global fits Capdevila *et al.* 1704.05340

J. Martin Camalich (CERN)

LUV in B decays

Precision probes of lepton nonuniversal $C_{9,10}^{\ell}$

• Go to the angular analysis of $B \to K^* \ell \ell ...$

$$I_{6}^{(\ell)} = NC_{10}^{\ell} q^{2} \beta_{\ell}^{2}(q^{2}) |\vec{k}| \left(\text{Re}[H_{V-}^{(\ell)}(q^{2})]V_{-}(q^{2}) + \text{Re}[H_{V+}^{(\ell)}(q^{2})\frac{H_{A+}^{(\ell)}(q^{2})}{C_{10}^{\ell}}] \right)$$

► The *H_{V,A+}* amplitudes are suppressed unles we have primed operators!

$$R_{6}[a,b] \approx \frac{C_{10}^{\mu}}{C_{10}^{e}} \times \frac{\int_{a}^{b} |\vec{k}| q^{2} \beta_{\mu}^{2} \operatorname{Re}[H_{V-}^{(\mu)}(q^{2})] V_{-}(q^{2})}{\int_{a}^{b} |\vec{k}| q^{2} \operatorname{Re}[H_{V-}^{(e)}(q^{2})] V_{-}(q^{2})}$$

R_6 is an optimal C_{10} LUV analyser!

Prospects for R₆ with a 5% precision

•
$$D_{P'_5} = P'^{\mu}_5 - P'^{e}_5$$

Altmannshofer et al. arXiv:1704.05435

Model-building

 Most popular models: Z' and Leptoquarks between 1 TeV and 100 TeV (perturbativity)

(see D'Amico et al. 1704.05438)

- Also loop-mediated, compositeness, x-dim, flavor-gauged symmetries...
- ca. 250 papers ...

• All you ever wanted to know about *B*-decay anomalies but were afraid to ask

Description In light of recent anomalies in B physics there is an increased interest in the theory community on its implications. As a quick response we are organizing an "instant workshop on B meson anomalies" at CERN from May 17-May 19 2017.

Conclusions

① "Evidence" for lepton universality violation in $b \rightarrow c\tau\nu$!

- Left-handed and tensor tree-level contributions Λ ~ 1TeV
- Warning: Avoid effects at one-loop level
- Challenging UV completions: Should appear soon at the LHC
- **2** "Evidence" for lepton universality violation in $b \rightarrow s\ell\ell$
 - 4σ tension of the data with LUV (SM)
 - Clean observables prefer C^ℓ_I-type of scenario

B. Grinstein @ B-decay anomalies workshop

• Fits of reported LUV require

$$rac{g^2}{\Lambda^2}pprox 0.25 imes {\cal G}_F \ V_{tb} \ V^*_{ts} \ rac{lpha}{4\pi} \ {\cal C}_{9(10)} \quad \Rightarrow \quad rac{\Lambda}{g}pprox 28 \ {
m TeV}$$

• Best argument to build VLHC! (or find NP sooner!!)

Backup

• Large-recoil region (low q^2)

- ▶ No LQCD (Sum Rules, models ...) and QCDf and SCET (power-corrections)
- Dominant effect of the photon pole

Charmonium region

- Dominated by long-distance (hadronic) effects
- Starting at the perturbative $c\bar{c}$ threshold $q^2 \simeq 6 7 \text{ GeV}^2$
- Low-recoil region (high q^2)
 - LQCD+HQEFT + OPE (duality violation)
 - Dominated by semileptonic operators

Hadronic uncertainties (Form factors)

- Hadronic interactions are lepton universal⇒Uncertainties largely cancel in R_{D*}
- Fit model-indep. parametrizations of FF to experimental $B \to D^{(*)}(\mu, e)\nu$ data Boyd. Grinstein & Lebed '96. Caprini. Lellouch & Neubert'98
- **Example:** $B \rightarrow D\tau\nu$ with LQCD

$$\begin{aligned} \langle D(k) | \bar{c} \gamma^{\mu} b | \bar{B}(p) \rangle &= (p+k)^{\mu} f_{+}(q^{2}) \\ &+ q^{\mu} \frac{m_{B}^{2} - m_{D}^{2}}{q^{2}} \left(f_{+}(q^{2}) - f_{0}(q^{2}) \right) \end{aligned}$$

- Scalar $f_0(q^2)$ enters rate $\propto m_{\ell}^2$
- CVC implies f₀(0) = f₊(0)

Na et al. PRD92(2015)no.5,054510 (see also Bailey et al. PRD92,034506)

• No non-zero recoil LQCD for $B \rightarrow D^*$: **HQET** (cont. from scalar FF is small)

See: Bernlocher et al. arXiv: 1703.05330, Bigi et al. 1703.06124

Hadronic uncertainties (Form factors)

- Hadronic interactions are lepton universal⇒Uncertainties largely cancel in R_{D*}
- Fit model-indep. parametrizations of FF to experimental $B o D^{(*)}(\mu,e)
 u$ data

Boyd, Grinstein & Lebed '96, Caprini, Lellouch & Neubert'98

SM predictions of $R_{D^{(*)}}$ seem to be well under control

• LQCD calculations for $B \rightarrow D^* \ell \nu$ will test **HQET**

Hadronic uncertainties (Form factors)

- Hadronic interactions are lepton universal ⇒ Uncertainties largely cancel in R_{D*}
- However, τ is heavy: phase-space and kinematic effects are important
- Strategy: Fit parametrizations of FF to experimental $B \rightarrow D^{(*)} \ell \nu$ data
 - Use HQEFT
 - Use LQCD (only for $B \rightarrow D\tau\nu$ mode)
 - Employ parametrizations of the q² dependence constrained by analyticity and unitarity Boyd, Grinstein & Lebed '96, Caprini, Lellouch & Neubert'98
- Non-zero recoil LQCD for $B \rightarrow D^* \tau \nu$ not available yet

Prediction relies on HQET relations neglecting $O((\Lambda_{QCD}/m_{c,b})^2, \alpha_s \times \Lambda_{QCD}/m_{c,b}, \alpha_s^2)$

 $\tau^- \rightarrow \pi^- \nu_\tau$ as a τ polarimeter: P_L

$$\frac{dP_L}{dq^2} = \frac{d\Gamma_{B,+}/dq^2 - d\Gamma_{B,-}/dq^2}{d\Gamma_B/dq^2}$$

Slope in
$$E_{\pi}$$
 of $d\Gamma_4 \Rightarrow$ Longitudinal Polarization

$$\frac{d^2\Gamma_4}{dq^2dE_{\pi}} = \frac{\mathcal{B}[\tau_{\pi}]}{|\vec{p}_{\tau}|} \frac{d\Gamma_B}{dq^2} \left[1 + \xi(E_{\pi}, q^2) \frac{dP_L}{dq^2} \right], \quad \xi(E_{\pi}, q^2) = \frac{1}{\beta_{\tau}} \left(2\frac{E_{\pi}}{E_{\tau}} - 1 \right)$$
M. Davier *et al.* PLB306, 411 (1993), Tanaka&Watanabe, PRD82, 034027 (2010)

• Applied to the BD* channel by Belle

J. Martin Camalich (CERN)

 $\tau^- \rightarrow \pi^- \nu_\tau$ as a τ polarimeter: P_\perp (and A_{FB}^τ !)

Alonso, JMC & Westhoff, arXiv:1702.02773

• P_{\perp} probes interference between τ polarization states

$$d\Gamma dP_{\perp} = \frac{(2\pi)^4 d\Phi_3}{2m_B} 2 \operatorname{Re} \left[\mathcal{M}_{B+} \mathcal{M}_{B-}^{\dagger} \right]$$

$$\frac{d^{2}A_{FB}^{d}}{dq^{2}dE_{d}} = \mathcal{B}[\tau_{d}] \left[f_{FB}^{d}(E_{d}, q^{2}) \frac{dA_{\tau}}{dq^{2}} + f_{\perp}^{d}(E_{d}, q^{2}) \frac{dP_{\perp}}{dq^{2}} \right]$$
$$f_{FB}^{\pi} = -\frac{\left(2E_{\pi}E_{\tau} - m_{\tau}^{2}\right)(E_{\tau} - |\bar{\rho}_{\tau}| - 2E_{\pi})}{2|\bar{\rho}_{\tau}|^{3}E_{\pi}} \qquad f_{\perp}^{\pi} = -\frac{4E_{\pi}^{2} - 4E_{\pi}E_{\tau} + m_{\tau}^{2}}{\pi E_{\pi}|\bar{\rho}_{\tau}|^{3}m_{\tau}}$$

Prospects at Belle (II)

Sensitivity to NP

J. Martin Camalich (CERN)