

Overview of hadron flavour production

Paolo Gandini

University of Oxford

Covering results from LHCb, ATLAS and CMS

FPCP 2017 5-9 Jun 2017, Prague

Outline

I will cover a selection of recent results (broad topic)

Apologies if your preferred topic has been neglected!

- LHCb: J/ψ prodution (prompt and from b)
- LHCb: open charm production
- ATLAS: $\psi(2S)$ and X(3872) production at 8 TeV
- CMS: B+ production at 13TeV
- ATLAS: b-hadron pair production at 8 TeV
- LHCb: b-hadron production asymmetry
- Central Exclusive Production at LHC

I will not cover:

- Exotica and pentaquark (see dedicated talk by B. Dey)
- Associated production (see dedicated talk by E. Bouhova-Thacker)
- Flavour Production in pA and AA collision (see dedicated talk by A.Festanti)
- Spectroscopy of conventional SM hadrons

Heavy Flavour Production

- At LHC main mechanism is gluon-gluon fusion
- Production measurements are vital for understanding of QCD
 - Provide empirical fragmentation functions
 - Probe proton structure at low-x (partonic momentum fraction)
 - Required for MC tuning
 - Help understanding SM backgrounds → NP searches

Sel	ected	Recent	Results
	LCCLCU	IUCCUIIU	TICSUIUS

ATLAS latest results:

• $\psi(2\mathrm{S})$ and X(3872) production at 8 TeV JHEP01 (2017) 117

b-hadron pair production at 8 TeV arXiv:1705.03374

CMS latest results:

• B+ production at 13 TeV arXiv:1609.00873

LHCb latest results:

b-hadron production asymmetry at 7 and 8 TeV arXiv:1703.08464

Open charm production at 5 TeV arXiv:1610.02230

[Erratum sub.]

LHCb: J/ψ cross-section at 13TeV

- Integrated luminosity of $3.05 \pm 0.12 \text{ pb}^{-1}$
- Measure differential cross-sections
- Two major sources of charm
- Prompt: Produced at primary interaction
 - Direct production
 - Feed-down from higher resonances
- Secondary: Produced in the decay of a b-hadron
- Separation of prompt J/ψ and J/ψ form b
- To separate them \rightarrow use pseudo-decay time

$$t_z = rac{(z_{J/\psi} - z_{\mathrm{PV}})M_{J/\psi}}{p_z}$$

JHEP 1510 (2015) 172, arXiv:1509.00771 (ERRATUM SUB)

LHCb: ERRATUM

- An issue was identified in the MC simulated samples
- Sampled used to calculate the track reconstruction efficiencies in LHCb
- Affects a small number of Run 2 production papers
- LHCb VELO simulation updated prior to Run 2 to account for radiation damage
 - Charge collection affected by induction on second metal layer routing lines,
 - Error made in the parametric correction for the effect
- Track efficiency calibration procedure was unable to correct mis-modelling
- Track reconstruction efficiency underestimated in simulation
- Problem affects primarely tracks at low pseudorapidity

LHCb: J/ψ cross-section at 13TeV

Prompt J/ψ

JHEP 1510 (2015) 172, arXiv:1509.00771 (ERRATUM SUB)

- Integrated over the acceptance of the analysis
- $\sigma(\text{prompt } J/\psi, \text{ pT} < 14 \text{ GeV}, 2.0 < y < 4.5) = 15.03 \pm 0.03 \pm 0.94 \text{ }\mu\text{b}$
- Compared to NRQCD calculations (Shao et al., JHEP 1505 (2015) 103)

J/ψ From b

- Differential cross-sections, $d\sigma/dp_T$, integrated over 2.0 < y < 4.5
- Compared to FONLL calculations (Cacciari et al., EPJ C75 (2015) 12, 610)

LHCb: J/ψ cross-section (Energy)

JHEP 1510 (2015) 172, arXiv:1509.00771 (ERRATUM SUB)

Prompt J/ψ production cross-sections integrated over LHCb fiducial region $\sigma(\text{prompt }J/\psi\text{ , LHCb, 13 TeV})$ 15.03 \pm 0.03 \pm 0.94 μb

$\sigma(J/\psi\text{-from-b}, LHCb, 13 TeV)$ 2.25 ± 0.01 ± 0.14 µb

Using a model based on PYTHIA6, extrapolate to a total 4π bb cross-section: $\sigma(pp \rightarrow bbX, 4\pi, 13 \text{ TeV}) = 495 \pm 2 \pm 52 \mu b$

FONLL: Cacciari et al., EPJ C75 (2015) no.12, 610

LHCb: Open Charm Production

JHEP 1603 159, JHEP 1609 013, arXiv:1510.01707 (ERR. SUB.)

Sig. + Sec.

- D⁰, D⁺, Ds⁺ and D^{*+} cross sections
- D meson cross-sections now measured at 3 energies

$$\begin{array}{ll} \sqrt{s} = 7\,\mathrm{TeV}\colon & \mathcal{L}_{int} = 15\,\mathrm{nb}^{-1} \\ \underline{\text{Nucl.Phys. B871 (2013) 1-20}}, \\ \sqrt{s} = 13\,\mathrm{TeV}\colon & \mathcal{L}_{int} = 5\,\mathrm{pb}^{-1} \\ \underline{\text{JHEP 1603 159}}, \underline{\text{JHEP 1609 013}}, \\ \sqrt{s} = 5\,\mathrm{TeV}\colon & \mathcal{L}_{int} = 9\,\mathrm{pb}^{-1} \\ \underline{\text{arXiv:1610.02230 [hep-ex]}}, \text{submitted to JHEP.} \end{array}$$

- Separation of prompt/secondary charm with $log(IP\chi^2)$
- Secondary component shows at higher $IP\chi^2$

LHCb $\sqrt{s} = 13 \text{ TeV}$

LHCb: Open Charm Production

JHEP 1603 159, JHEP 1609 013, arXiv:1510.01707 (ERR. SUB.) arXiv:1610.02230, submitted to JHEP

Prompt D^o cross sections at 13TeV

Prompt D^o cross sections at 5TeV

Production of $\psi(2S)$ and X(3872) at 8 TeV

ATLAS, JHEP01 (2017) 117

- Structure of $X(3872) \rightarrow$ debate ongoing
- Improve our understanding with precision measurements
- Mass, width and production cross-section
- ATLAS analysis uses 2012 data (11.4 fb⁻¹)
- |y| < 0.75 and $10 < p_T < 70$ GeV

- |y|<0.16 ω $\psi(2S)$ as control sample Final state $J/\psi(\mu^+\mu^-)\pi^+\pi^-$ Prompt/non-prompt components separated by pseudo-lifetime (in transverse plane)

 | 0.20|
 | 5 |
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0.1|
 | 0

Production of $\psi(2S)$ and X(3872) at 8 TeV

ATLAS, JHEP01 (2017) 117

- $\psi(2S)$ production
 - Good agreement with NLO NRQCD for prompt
 - Good agreement with FONLL for non-prompt
- X(3872) production
 - Prompt X(3872) good agreement with NLO NRQCD calculations
 - But FONLL overestimates non-prompt X(3872) production

$$R_B = \frac{\mathcal{B}(B \to X(3872) + \text{any})\mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-)}{\mathcal{B}(B \to \psi(2S) + \text{any})\mathcal{B}(\psi(2S) \to J/\psi\pi^+\pi^-)} = (3.95 \pm 0.32(\text{stat}) \pm 0.08(\text{sys})) \times 10^{-2}$$

CMS: B+ production at 13TeV

- Total and differential cross sections for inclusive production
- Use only the exclusive decay channel $B^+ \rightarrow J/\psi K^+$
- Integrated luminosity of 49.4 pb⁻¹

	$n_{\rm sig}$	$A\epsilon$ [%]	$\sigma \left[\mu \mathbf{b} \right]$	FONLL [μ b]	PYTHIA $[\mu b]$
Inclusive bin	3477^{+86}_{-84}	3.9 ± 0.5	$14.9 \pm 0.4 \pm 2.0 \pm 0.4$	$9.9^{+3.3}_{-2.2}$	17.2

ATLAS:b-hadron pair production at 8 TeV

arXiv:1705.03374

- Integrated luminosity of 11.4 fb⁻¹
- b-hadron selected requiring:
 - first b-hadron $\rightarrow J/\psi(\rightarrow \mu\mu)+X$
 - second b-hadron $\rightarrow \mu + X$
 - Very convenient 3muon final state
- Parameterise in terms of several kinematic variables
- BDT based selection
- Results compared with predictions from many generators

$$\sigma(B(\to J/\psi[\to \mu^+\mu^-] + X)B(\to \mu + X)) = 17.7 \pm 0.1(\text{stat}) \pm 2.0(\text{syst}) \text{ nb.}$$

B-hadron production asymmetries

- Pair production of $\overline{bb} \rightarrow valence quarks introduce asymmetries$
- Important inputs for precise CP violation measurements
- Parameterise asymmetry wrt p_T and y

$$A_{\rm P} \equiv rac{\sigma(\overline{H}_b) - \sigma(H_b)}{\sigma(\overline{H}_b) + \sigma(H_b)}$$

• Numerical results integrating over fiducial range of measurements

	$A_{ m P} \sqrt{s} = 7 { m TeV}$	$A_{ m P} \sqrt{s} = 8 { m TeV}$
B^+	$-0.0023 \pm 0.0024 \pm 0.0037$	$-0.0074 \pm 0.0015 \pm 0.0032$
B^0	$0.0044 \pm 0.0088 \pm 0.0011$	$-0.0140 \pm 0.0055 \pm 0.0010$
B_s^0	$-0.0065 \pm 0.0288 \pm 0.0059$	$0.0198 \pm 0.0190 \pm 0.0059$
Λ_b^0	$-0.0011 \pm 0.0253 \pm 0.0108$	$0.0344 \pm 0.0161 \pm 0.0076$

CEP

Central Exclusive Production at LHC

CEP – Introduction

• Central Exclusive Production can be done at LHC → What do we look for?

$$pp \rightarrow p + X + p$$
 (rapidity gaps and protons intact)

- Colourless objects in QCD, Very low PT objects, Clean experimental environment
- Rich Physics: Photon-Pomeron, Double-Pomeron, Photoproduction, Glueballs, Exotica
- Just to give an idea of "coverage" of various processes (e.g. compared with LHCb)

CEP - Signatures

- Clearly one needs a low pileup \rightarrow LHCb or dedicated high β^* runs
- How do we select / trigger these events?
- Protons \rightarrow escape in the beam pipe
- Events with low activity in detector
- In LHCb: we can look at backwards tracks in the VELO (some η coverage)
- Unique features compared to "standard" LHC event → very attractive

Typical Event

CEP-like event: 2muons

LHCb is forward, but we can detect backward tracks in the VELO (no p information for those)

Herschel Detector at LHCb

- New detector installed for Run2 in 2015.
- Five planes of plastic scintillators in the tunnel
- Use same electronics of Preshower Detector
- Start of 2016: new better electronics installed
- Start of 2017: counters replaced (radiation ageing)
- Increase η coverage in the forward/backward region
- IDEA is to veto events with activity at high η

To get an idea on distances

LHC-wide effort

- Forward detectors installed/co-used by other collaborations as well
- CMS+TOTEM (special runs), ATLAS+ALPHA
- Mutual interests documented in joined document
- A lot of effort both theoretical and experimental communities
- Two methods
 - Tag the protons and momentum balance
 - Veto forward activity and fit the pt² spectrum

J. Phys. G: Nucl. Part. Phys.43(2016)110201

CMS and TOTEM

Excellent calometric rapidity coverage:

- Hadronic Forward Calorimeter & CASTOR
- ZDC (zero degree calorimeter)

Forward Shower Counters

Embedded Totem telescopes T1/T2 and Roman Pots CT-PPS (CMS-TOTEM Proton Precision Spectrometer) for double arm proton tagging at high pile-up

CMS-TOTEM Precision Proton Spectrometer (CT-PPS)

Now replaced by pixels

2016 JINST 11 C11027

ATLAS and ALFA/AFP

Calorimetry at high n

- LUCID (LUminosity Cerenkov Integrating Detector)
- ZDC

ALFA (Absolute Luminosity for ATLAS): RP stations placed 240m from IP

CEP-type analyses at LHCb

- LHCb can't "reconstruct" the forward/backward intact protons
- Select signal requiring no other activity in the detector
- Extract purity looking at the pt² distribution (CEP/nonCEP fractions)
- Irreducible backgrounds dominated by inelastic backgrounds
- Undetectable events where the proton breaks up in the forward direction

CEP of J/ψ at 13TeV

- Use 2015 dataset @13TeV (200pb⁻¹) + Herschel information
- Nearly all numbers (efficiencies, etc) come from data driven approaches
- Selection:
 - Muon Triggers for CEP (require low multiplicity on SPD)
 - Two reconstructed muons with $2 < \eta < 4.5$
 - No additional tracks/energy
 - Within 65 MeV/ c^2 of the J/ψ
 - Herschel VETO applied (and validated with different approaches)
 - Background halved relative to previous analyses

CEP of J/ψ at 13TeV

- Clean pedestals and complete suppression of pileup
- Pedestals calibrated using non connected channels
- Quadratic sum of normalised signals (Σ_H) used to create veto
- Response checked against 3 classes of events
- Clear signal/background enhancement

CEP of J/ψ at 13TeV

Results in a CONF note

$$\sigma_{J/\psi \to \mu^+\mu^-}(2.0 < \eta_{\mu^+}, \eta_{\mu^-} < 4.5) = 407 \pm 8 \pm 24 \pm 16 \text{ pb}$$

 $\sigma_{\psi(2S) \to \mu^+\mu^-}(2.0 < \eta_{\mu^+}, \eta_{\mu^-} < 4.5) = 9.4 \pm 0.9 \pm 0.6 \pm 0.4 \text{ pb}$

Differential cross section in better agreement with JMRT NLO rather than LO predictions

13 TeV data allows significant extension of the reach in W

Simple power law insufficient but data well described by NLO

Conclusions

LHC is a very good gym for production measurements

- Many results in the b and c sector updated
- Only had time to cover a very small selection of recent results
- Single and Double meson production measurements
- Different rapidiy ranges are investigated according to detector properties
- Many ongoing analyses: Bc Y production, jet momentum fraction for prompt J/psi

CEP of heavy flavour

- LHC is essentially a gluon collider
- But also a gamma collider → photoproduction!
- Provides selection rules for production: e.g pomeron-pomeron 0⁺⁺,2⁺⁺
- In brief, a very good laboratory for clean direct production of many states (exotica?)
- Many other searches are possible!

Backup Slides

Detector Coverage

Low-x coverage

LHCb Errata

Affects the following recently updated papers

- Measurements of prompt charm production cross-sections in pp collisions at $\sqrt{s} = 13$ TeV *JHEP 1603 (2016) 159, JHEP 1609 (2016) 013, arXiv:1510.01707*
- Measurement of forward J/ ψ production cross-sections in pp collisions at $\sqrt{s} = 13$ TeV *JHEP 1510 (2015) 172, arXiv:1509.00771*
- Measurements of prompt charm production cross-sections in pp collisions at $\sqrt{s} = 5$ TeV arXiv:1610.02230, submitted to JHEP
- Measurement of the J/ ψ pair production cross-section in pp collisions at $\sqrt{s}=13$ TeV arXiv:1612.07451, submitted to JHEP

Errata have been submitted to JHEP for papers

JHEP 1510 172 JHEP 1603 159

preprints on arXiv have been updated

CEP processes

di-γ fusion

 $\mu + \mu$ - , e + e - , $\pi + \pi$ - , W + W - QED "standard candle" process continuum lepton pair production

γ-pomeron fusion

 ρ , J/ ψ , Y, Z, ... Photoproduction: Test of QCD and description of diffraction and soft processes. Sensitive to diffractive PDF at very low x (to 5 x 10 -6)

di-pomeron exchange

Xc , Xb , π+π- , Dijet, gg, ...
Test of QCD,and hadron spectroscopy
Pomeron content at low Q 2 dominated
by gluons; access to scalar and tensor
glueballs

Central Exclusive $\pi+\pi$ - production

CMS: Dedicated data sample (2010) with 450 µb⁻¹ in low pileup conditions

Large cross sections

Access to spectroscopic study of low mass resonances search for glueball candidates

Large backgrounds; estimated from calo multiplicities

Total cross section: $\sigma_{Vis} = 20.5 \pm 0.3 \text{(stat.)} \pm 3.1 \text{(sys.)} \pm 0.8 \text{(lumi)} \mu \text{b}$

Differential Cross section,for $|y(\pi)|$ < 2 and $|y(\pi)|$ < 1 some evidence of resonant structures

Unfolded cross sections:

$$|y(\pi^{\pm})| < 2.0$$
: $\sigma_{
m vis} = 20.5 \pm 0.3 \; {
m (stat.)} \pm 3.1 \; {
m (sys.)} \pm 0.8 \; {
m (lumi)} \; \mu{
m b}$ $|y(\pi^{\pm})| < 1.0$: $\sigma_{
m vis} = 8.1 \pm 0.2 \; {
m (stat.)} \pm 1.2 \; {
m (sys.)} \pm 0.3 \; {
m (lumi)} \; \mu{
m b}$