

15th Conference on Flavor Physics and CP Violation

PCP 20

Top quark production and properties

Markus Cristinziani

for the ATLAS and CMS collaborations

FPCP in Prague, June 2017

The top quark

Top quark is unique in many ways

- heaviest, of course ... but also:
- it's a bare quark, decaying before hadronising
 - $T_{had} \approx h/\Lambda_{QCD} \approx 2 \cdot 10^{-24} s$
 - T_{flip} ≈ h m_t /Λ_{QCD}² ≫ T_{had}
 - $\tau_{top} \approx h/\Gamma_{top} \sim G_F^{-1} m_t^{-3} = 5 \cdot 10^{-25} s$
- Top Yukawa is the largest SM coupling

° $m_{top} = y_t v/\sqrt{2} \approx 174 \text{ GeV} \rightarrow y_t \approx 1$

- and hence largest Higgs mass correction
- There are many of them
 - 6 million in Run-1
 - ~2 orders of magnitude to go

Outline

Top couplings

Wtb vertex structure Single top production and decay

Three mechanisms (@ LO)

 σ_{t-ch} (8 TeV) = 87.7 $^{+3.4}_{-1.9}$ pb σ_{t-ch} (13 TeV) = 217.0 $^{+9.1}_{-7.7}$ pb

Golden channel

 σ_{Wt} (8 TeV) = 22.4 ± 1.5 pb σ_{Wt} (13 TeV) = 71.7 ± 3.8 pb

Observed at the LHC

 $\sigma_{s\text{-}ch}$ (8 TeV) = 5.6 ± 0.2 pb $\sigma_{s\text{-}ch}$ (13 TeV) = 10.3 ± 0.4 pb

Challenging at the LHC

Can extract |V_{tb}| with

- ▶ $\sigma_{\text{meas.}} / \sigma_{\text{theo.}} = |\mathbf{f}_{\text{LV}} \cdot \mathbf{V}_{\text{tb}}|^2$
- fLV left-handed FF including new physics
- independent of Ngenerations or CKM unitarity

Assumptions

- Wtb SM-like, left-handed, weak coupling
- ▶ |V_{tb}| >> |V_{ts}|, |V_{td}|

Agreement in all 3 processes with SM

ATLAS+CMS Preliminary	LHC <i>top</i> WG	May 2017
$ f_{LV}V_{tb} = \sqrt{\frac{\sigma_{meas}}{\sigma_{theo}}}$ from single top qua	rk production	
σ _{theo} : NLO+NNLL MSTW2008nnlo PRD 83 (2011) 091503, PRD 82 (20 PRD 81 (2010) 054028	10) 054018,	
$\Delta\sigma_{\mathrm{theo}}$: scale \oplus PDF		total theo
m _{top} = 172.5 GeV		$If_{LV}V_{tb}I \pm (meas) \pm (theo)$
-channel:		
ATLAS 7 TeV ¹ PRD 90 (2014) 112006 (4.59 fb ⁻¹)	┝─┼━┼─┨	$1.02 \pm 0.06 \pm 0.02$
ATLAS 8 TeV ^{1,2} arXiv:1702.02859 (20.2 fb ⁻¹)	⊨ ∔≡∔-1	$1.028 \pm 0.042 \pm 0.024$
CMS 7 TeV JHEP 12 (2012) 035 (1.17 - 1.56 fb ⁻¹)	<mark>⊢∃●</mark> ∔-1	1.020 ± 0.046 ± 0.017
CMS 8 TeV JHEP 06 (2014) 090 (19.7 fb ⁻¹)	<mark>⊢ ¦e ⊨ I</mark>	$0.979 \pm 0.045 \pm 0.016$
CMS combined 7+8 TeV JHEP 06 (2014) 090	<mark>⊢+++</mark>	$0.998 \pm 0.038 \pm 0.016$
CMS 13 TeV ² arXiv:1610.00678 (2.3 fb ⁻¹)	├──┼●┼── ┨	1.03 ± 0.07 ± 0.02
ATLAS 13 TeV ² JHEP 04 (2017) 086 (3.2 fb ⁻¹)	┠╾┼═┼──┨	$1.07 \pm 0.09 \pm 0.02$
Wt:		0.15
ATLAS 7 TeV PLB 716 (2012) 142 (2.05 fb ⁻¹)		1.03 + 0.15 = 0.03
CMS 7 TeV PRL 110 (2013) 022003 (4.9 fb ⁻¹)	├──┼●┼── ┥	$1.01^{+0.16}_{-0.13} \begin{array}{c} + 0.03 \\ - 0.04 \end{array}$
ATLAS 8 TeV ^{1.3} JHEP 01 (2016) 064 (20.3 fb ⁻¹)	l l l l l l l l l l l l l l l l l l l	$1.01 \pm 0.10 \pm 0.03$
CMS 8 TeV ¹ PRL 112 (2014) 231802 (12.2 fb ⁻¹)		$1.03 \pm 0.12 \pm 0.04$
LHC combined 8 TeV ^{1,3} ATLAS-CONF-2016-023,	<mark>► + ▼ + −</mark> 1	$1.02 \pm 0.08 \pm 0.04$
CMS-PAS-TOP-15-019 ATLAS 13 TeV ² arXiv:1612.07231 (3.2 fb ⁻¹)	├ ───┼ ⋼ ┼─	1.14 ± 0.24 ± 0.04
s-channel:		. 0.19
ATLAS 8 TeV ³ PLB 756 (2016) 228 (20.3 fb ⁻¹)		$0.93 + 0.18 \pm 0.04$
		¹ including top-quark mass uncertainty ² σ_{thec} : NLO PDF4LHC11 NPPS205 (2010) 10, CPC191 (2015) 74 including beam energy uncertainty
04 06 0	.8 1 1.2	1.4 1.6 1.8

Wtb vertex structure W polarisation in tī events

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta^*} = \frac{3}{4} \left(1 - \cos^2 \theta^* \right) F_0$$

+ $\frac{3}{8} \left(1 - \cos \theta^* \right)^2 F_L + \frac{3}{8} \left(1 + \cos \theta^* \right)^2 F_R$
 $F_L = 0.311 \pm 0.005, F_R = 0.0017 \pm 0.0001,$
 $F_0 = 0.687 \pm 0.005$

erc

UNIVERSITAT BONN

Units 0.18 μ + \geq 4-jets, \geq 2 tags ATLAS Simulation - Right handed 0.16 √s=8 TeV Leptonic Analyse Arbitrary Left handed — Longitudinal 0.14 0.12 0.1 0.08 0.06 0.04 0.02 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 $\cos \theta^*$

Structure of Wtb vertex

angular distribution of W decay products

PLB 762 (2016) 512

- kinematic reconstruction of the tt system
- analysers: charged lepton (d-type quark) from W
- template fit used to extract helicity fractions

 $F_0 = 0.709 \pm 0.012 \text{ (stat.+bkg. norm.)} \stackrel{+0.015}{_{-0.014}} \text{ (syst.)}$ $F_L = 0.299 \pm 0.008 \text{ (stat.+bkg. norm.)} \stackrel{+0.013}{_{-0.012}} \text{ (syst.)}$ $F_R = -0.008 \pm 0.006 \text{ (stat.+bkg. norm.)} \pm 0.012 \text{ (syst.)}$

Dominant uncertainty Jet energy scale and resolution

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu}(V_L P_L + V_R P_R)tW_{\mu}^{-}$$
$$-\frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{M}(g_L P_L + g_R P_R)tW_{\mu}^{-}$$

 M_W

FPCP 2017 June 5-9, Prague Czech Republic 15th Conference on Flavor Physics and CP Violation

Wtb vertex structure HFP 02 (2017) 02 Search for anomalous couplings

Single top t-channel

erc

using 7+8TeV, μ +jets only

Strategy

UNIVERSITÄT BONN

- Bayesian NN (BNN) for S/B separation
- dedicated anom. Wtb BNNs for each scenario

Limit extraction

- simultaneous 2- or 3-dim fit to SM BNN
 - and anomalous Wtb BNN outputs
 - remaining couplings assumed as SM

Results @ 95% C.L.

- $|f_V^R| < 0.16$
- |f_T^L| < 0.057
- ► -0.049 < f^R < +0.048</p>

95% CL observed

68% CL observed

95% CL expected

68% CL expected

0.25

03

 $|f_{\pm}^{L}|$

02

$$\mathfrak{L} = \frac{g}{\sqrt{2}} \bar{\mathrm{b}} \gamma^{\mu} \left(f_{\mathrm{V}}^{\mathrm{L}} P_{\mathrm{L}} + f_{\mathrm{V}}^{\mathrm{R}} P_{\mathrm{R}} \right) \mathrm{tW}_{\mu}^{-} - \frac{g}{\sqrt{2}} \bar{\mathrm{b}} \frac{\sigma^{\mu\nu} \partial_{\nu} \mathrm{W}_{\mu}^{-}}{M_{\mathrm{W}}} \left(f_{\mathrm{T}}^{\mathrm{L}} P_{\mathrm{L}} + f_{\mathrm{T}}^{\mathrm{R}} P_{\mathrm{R}} \right) \mathrm{t}$$

Three-dimensional fit

Angular asymmetries

erc

UNIVERSITÄT BONN

top-quark polarisation

W boson spin observables

unfolded at parton level

Extract limits on a.couplings ► -0.18 < Im[g_R] < 0.06 @ 95% C.L.</p>

CMS measures top quark asymmetry smaller then predicted (2σ)

Asymmetry	Angular observable	Polarisation observable	SM prediction
$A_{\rm FB}^\ell$	$\cos heta_\ell$	$rac{1}{2}lpha_\ell P$	0.45
$A_{\rm FB}^{tW}$	$\cos \theta_W \cos \theta_\ell^*$	$\frac{3}{8}P(F_{\rm R}+F_{\rm L})$	0.10
$A_{\rm FB}$	$\cos heta_\ell^*$	$\frac{3}{4}\langle S_3\rangle = \frac{3}{4}(F_{\rm R} - F_{\rm L})$	-0.23
$A_{\rm EC}$	$\cos heta_\ell^*$	$\frac{3}{8}\sqrt{\frac{3}{2}}\langle T_0\rangle = \frac{3}{16}(1-3F_0)$	-0.20
$A_{\rm FB}^T$	$\cos heta_\ell^T$	$rac{3}{4}\langle S_1 angle$	0.34
$A^N_{ m FB}$	$\cos heta_\ell^N$	$-rac{3}{4}\langle S_2 angle$	0
$A_{\rm FB}^{T,\phi}$	$\cos\theta_\ell^*\cos\phi_T^*$	$-\frac{2}{\pi}\langle A_1 angle$	-0.14
$A_{\mathrm{FB}}^{N,\phi}$	$\cos\theta_\ell^*\cos\phi_N^*$	$\frac{2}{\pi}\langle A_2 \rangle$	0

 $\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}(\cos\theta_X)} = \frac{1}{2} \left(1 + \alpha_X P \cos\theta_X \right) \qquad \mathbf{\alpha}_{\mathrm{l}} \, \mathbf{P} = \mathbf{0.97} \pm \mathbf{0.12}$

Wtb vertex structure Triple differential decay rates

ATLAS Preliminary

√s = 8TeV. 20.2 fb

0.25 0.2

0.05

Normalised triple-differential (θ , θ^* , ϕ^*) decay rate of top quarks

- complete description of anomalous couplings in Wtb + top polarisation
- ▶ relate to helicity amplitudes in t→Wb
 - $\frac{1}{N} \frac{\mathrm{d}^3 N}{\mathrm{d}(\cos\theta) \mathrm{d}\Omega^*} = \sum_{k=0}^1 \sum_{l=0}^2 \sum_{m=-k}^k a_{k,l,m} \sqrt{2\pi} Y_k^m(\theta,0) Y_l^m(\theta^*,\phi^*).$
- 9 a_{k,l,m} = 0, parameterised by
 - 3 amplitude fractions f₁, f₁⁺, f₀⁺
 - **2** phases δ_{-} : can imply CP violation, δ_{+} not observable
 - a nuisance parameter

erc

UNIVERSITAT BONN

Strategy and results

- global fit with all correlations
- extraction of limits on anomalous couplings
- no assumptions on values of the other couplings
- In agreement with SM

 \times Best Fit

68% CL

SM

່ງ ຍິ ຍິ ATLAS Preliminary

√s = 8TeV. 20.2 fb⁻

× Best Fit

68% CL

SM

tgt Inclusive tī production

 t
 t
 CMS-PAS-TOP-16-02

 UNIVERSITÄT BONN
 EPJC 77 (2017) 220

tgt Measurement of tī+jets

Differential distributions in Njets

- extensive measurements in Run-1
- including events with veto on extra jets
 improve modelling in simulation

Latest results at 13 TeV

Tuning parameters in matrix-element, parton-shower, additional radiation CMS Preliminary 19.7 fb⁻¹ (8 TeV)

PLB 746 (2015) 132 EPJC 76 (2016) 11 EPJC 76 (2016) 379

Measurement of tt+bb

Important test of QCD

erc

tt+jets and tt+bb irreducible background for difficult analyses like ttH

Measurements

UNIVERSITAT BONN

- several at 7 and 8 TeV
- new result at 13 TeV using dilepton channel 2.3 fb⁻¹
- also in visible phase space and as ratio

 $(\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}jj})^{\text{vis}} = 0.024 \pm 0.003 \,(\text{stat}) \pm 0.007 \,(\text{syst}).$

 $\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}jj} = 0.022 \pm 0.003 \text{ (stat)} \pm 0.006 \text{ (syst)}.$

good agreement with expectation

Systematic uncertainties dominate

largest contribution from b-tagging and mis-tagging of c- and light jets

EPJC 77 (2017) 40

CMS-PAS-TOP-17-005

Measurement of tTW & tTZ

erc

CMS Preliminary

36 fb⁻¹ (13 TeV)

New: analysis of full 2015/16 13 TeV data

- ▶ 2 same-sign lepton $\rightarrow t\bar{t}W$, BDT
- ▶ 3 or 4 leptons $\rightarrow t\bar{t}Z$, cut & count
- several signal regions based on N_{jets} and N_{b-jets}

SS 2L

UNIVERSITAT BONN

- further split in + + and -
- non-prompt background from low BDT score region

3L and 4L

- non-prompt lepton background from control regions
- WZ/ZZ from simulation, validated in control regions

MS-PAS-TOP-17

Results and EFT interpretation

1.5

0.5

0.4

0.6

0.8

1

1.2

Measured cross section at 13 TeV

 $\sigma(t\bar{t}Z) = 1.00^{+0.09}_{-0.08}(stat.) {}^{+0.12}_{-0.10}(sys.) \text{ pb}$ $\sigma(t\bar{t}W) = 0.80 {}^{+0.12}_{-0.11}(stat.) {}^{+0.13}_{-0.12}(sys.) \text{ pb}$

erc

UNIVERSITÄT BONN

EFT Lagrangian

- 0.2 do not consider NP couplings to first and second generation or affecting $t\bar{t}$, H, or diboson
- consider NP effects on $t\bar{t}H$, $t\bar{t}W$ and $t\bar{t}Z$

Wilson coefficient	Best fit $[\text{TeV}^{-2}]$	$1\sigma \operatorname{CL}[\operatorname{TeV}^{-2}]$	$2\sigma \operatorname{CL}[\operatorname{TeV}^{-2}]$
$ \bar{c}_{uB}/\Lambda^2 + 0.1 \text{TeV}^{-2} $	3.2	[0.0, 4.4]	[0.0, 5.4]
$ \bar{c}_u/\Lambda^2 + 18.5 \mathrm{TeV}^{-2} $	19.1	[5.0, 26.4]	[0.0, 32.5]
\bar{c}_{uW}/Λ^2	3.0	[-4.1, -1.5] and [1.2, 4.1]	[-5.1, 5.0]
\bar{c}_{Hu}/Λ^2	-9.4	[-10.3, -8.1] and [0.1, 2.1]	[-11.1, -6.6] and [-1.4, 3.0]

♣ 2-D best fit 68% contou 95% contou

- 1-D best fit — 1-D tīZ ± 1 σ — 1-D tĪW ± 1 σ الله tīZ theory

√ /√ tīW theory

1.4

1.6

1.8

 $\sigma_{t\bar{t}W}$ [pb]

tZt

CMS-PAS-TOP-14-008 PRD 91 (2015) 072007

Measurement of $t\bar{t}\gamma$ production

First observation (5.3 σ) with 7 TeV data

- measurement in a fiducial volume, E_T(γ) > 20 GeV
- non-prompt photon contributions data-driven
- template fit to track isolation variable

erc

UNIVERSITÄT BONN

New for FPCP2017 paper with 8 TeV data

▶ also differential in photon p_T and $|\eta|$

6) 045 CMS-PAS-HIG-17-003

ttH production

CMS Preliminarv

tHt

35.9 fb⁻¹ (13 TeV)

Run-1 ATLAS+CMS combination

CMS-PAS-HIG-17-004

- ▶ $\mu = \sigma_{\text{meas.}} / \sigma_{\text{theo.}} = 2.3^{+0.7} 0.6$
- ▶ 4.4σ (2.0 σ expected)

erc

UNIVERSITÄT BONN

m_µ = 125 GeV $\mu = 1.5^{+0.5}_{-0.5} \begin{bmatrix} +0.3 \\ -0.3 \end{bmatrix} (\text{stat.})^{+0.4}_{-0.4} (\text{syst})^{-1}$ 21 Wg 000000 $\mu = 1.8^{+0.6}$ -0.6 Η 31 μ = 1.0 $^{\text{+0.8}}$ -0.7 g 000000 W 41 μ = 0.9 $^{+2.3}$ -1.6 -1-0.5 0 0.5 1 1.5 2 2.5 3 3.5 Best fit µ(ttH)

Latest Run-2 results (CMS)

- **b** multilepton: $3.3\sigma(2.5\sigma)$
- ▶ tau-lepton channels: 1.4σ (1.8σ)
- search for tH

arXiv:1311.2028 [hep-ph] (2013)

FCNC tZq

Search for $t\bar{t} \rightarrow ZqWb$

- three lepton final state
- pair objects and minimise χ²

$$\chi^{2} = \frac{\left(m_{j_{a}\ell_{a}\ell_{b}}^{\text{reco}} - m_{t_{\text{FCNC}}}\right)^{2}}{\sigma_{t_{\text{FCNC}}}^{2}} + \frac{\left(m_{j_{b}\ell_{c}\nu}^{\text{reco}} - m_{t_{\text{SM}}}\right)^{2}}{\sigma_{t_{\text{SM}}}^{2}} + \frac{\left(m_{\ell_{c}\nu}^{\text{reco}} - m_{W}\right)^{2}}{\sigma_{W}^{2}}$$

Results

▶ BR(t→Zq) < 0.07% (0.08%)</p>

Extrapolation

sensitivity increase at HL-LHC, 3ab⁻¹

" γ " $t \rightarrow Zu$	" σ " $t \rightarrow Zu$	" γ " $t \rightarrow Zc$	"σ" t → Zc	" γ " $t \rightarrow Zu + Zc$	" σ " $t \rightarrow Zu + Zc$
$4.3 \cdot 10^{-5}$	$4.3 \cdot 10^{-5}$	$5.6 \cdot 10^{-5}$	$5.8\cdot10^{-5}$	$2.4 \cdot 10^{-5}$	$2.5 \cdot 10^{-5}$

m_{all} [GeV]

FPCP 2017 June 5-9. Prague Czech Republic 15th Conference on Flavor Physics and CP Violation

FCNC tZq

Production and decay vertices

- three lepton signature
- training two BDTs: BDT-tZ and BDT-tt

Results

- BR(t→Zu) < 0.022% (0.027%)
- BR(t→Zc) < 0.049% (0.118%)

FCNC tHq

- H→leptons
- ▶ aiming at $H \rightarrow WW, \tau\tau, ZZ$
- reinterpreting tTH searches

<u>PLB 749 (2015) 519</u>

- н→ьр́
- dedicated analysis
- split in regions (N_{jets}, N_{b-tags})
- Н→үү
- limited by statistics

New for FPCP2017

- First Run-2 FCNC search: $H \rightarrow \gamma \gamma$ (36/fb)
- Use leptonic and hadronic top (split into two categories each)

Run-1 ATLAS combination

- BR (t→Hc) < 0.46% (0.25%)</p>
- BR (t→Hu) < 0.45% (0.29%)</p>

Associated ty production

FCNC tyq

- BR (t \rightarrow u γ) < 1.3 \cdot 10⁻⁴
- BR (t→ cγ) < 1.7 · 10⁻⁴

m,=172.5 GeV

CMS

m,=172.5 GeV (q=u)

(q=c

10⁻³

H1 (q=u) m_t=175 GeV

10⁻²

CMS

10⁻⁴

 10^{-4}

10^{-5 L}

10⁻⁵

u/c

- **Anomalous couplings**
 - κ_{tuy} < 0.025 and κ_{tcy} < 0.091 using NLO

Data/Pred

 10^{-1} $B(t \rightarrow q\gamma)$

tgq vertex can be probed in single top production

▶ Wb

- tW ℓ^+
- or Wbj

multijet BNN, SM BNN +

different charge asymmetry \rightarrow NN

top-quark softer than in SM, large $p_T(W)$,

 $BR(t \rightarrow gu) < 0.004\% BR(t \rightarrow gc) < 0.020\%$

also interpreted in terms of κ_{tqg} or BR

two dedicated BNN

$BR(t \rightarrow gu) < 0.002\%$ $BR(t \rightarrow gc) < 0.041\%$

FCNC summary

CP violation in tt production and decay

- construct T-odd observables of the form v₁ · (v₂ × v₃) from momentum and spin vectors
 - $\circ \text{ e.g. } (\vec{p_{\mathrm{b}}} + \vec{p_{\mathrm{b}}}) \cdot (\vec{p_{\ell}} \times \vec{p_{j_1}}) \text{ and } Q_{\ell} \vec{p_{\mathrm{b}}} \cdot (\vec{p_{\ell}} \times \vec{p_{j_1}})$

IHFP 03 (20

erc

UNIVERSITÄT BONN

- CP violation manifests as an asymmetry in O_i (>0 vs. <0)</p>
- diluted by 35 73 %, mainly due to incorrectly assigned b-jets

measured values consistent with 0, with %-level uncertainties

- ▶ dominated by stat. uncertainties → will improve with 13 TeV data
- **first constraint on** A_{dir}^{bc} **and improved limit on** A_{dir}^{cl}

¹ see PRL 110 (2013) 232002

Search for CP violation

- in top quark decay
- in single top quark production
- in b-hadrons from tt

Characterisation of top quark production and decay

- Wtb structure through inclusive and differential single top
- couplings to neutral bosons through $t\bar{t}+X$ measurements
- search for very rare FCNC couplings

Interpretations

- in terms of anomalous couplings in Wtb
- in terms of EFT coefficients (single or multiple analyses)

