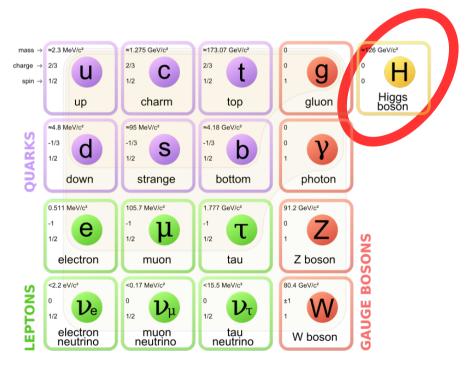


Searches for Beyond SM Physics with ATLAS and CMS

Nikolaos Rompotis (University of Liverpool) on behalf of the ATLAS and CMS collaborations

FPCP 2017 - Flavor Physics & CP Violation



Why beyond SM?

 In 2012 the Standard Model of Particle Physics (SM) particle content was completed with the discovery of the last missing piece of the puzzle – the Higgs boson

However, we know that the SM is not the final theory:

- Gravity not included
- Dark matter not included
- Dark energy not included
- Cannot generate the observed matterantimatter asymmetry
- Neutrino masses not included

There is "hard" evidence that there is **new physics** beyond the SM

Why beyond SM at the LHC?

- There are very good reasons to look for beyond SM (BSM) physics at the LHC
 - LHC defines the energy frontier and it is the only place to look directly for heavy new particles
 - Some of the "hard evidence" BSM physics questions may be related
 - e.g. searches for weakly interacting massive particles (dark matter candidate); new CP violation sources; TeV scale gravity; seesaw scenarios for neutrino masses,
 - "Soft evidence" BSM physics questions directly point to the energy scale explored by the LHC
 - Force unification implying SUSY at TeV
 - Little hierarchy problem: fine tuning of the mass of the Higgs boson

Where to look for BSM physics at ATLAS/CMS

- Through the Higgs sector
 - No a priori reason for the Higgs sector to be minimal
- Supersymmetry (SUSY)
 - Highly motivated (unification, dark matter, little hierarchy,...) and phenomenology thoroughly studied
- Exotics
 - Non-SUSY or BSM Higgs that is "beyond the beaten path"

There is no clear boundary among these three categories, which are actually overlapping

Disclaimer: only a few highlights from each topic will be covered here due to time and space limitations!

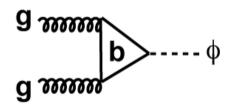
Nikolaos Rompotis

BSM Higgs searches

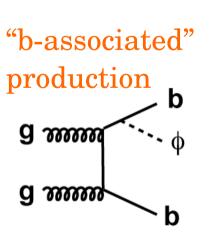
- How to approach a BSM Higgs sector
 - Extended Higgs sector: more than one Higgs boson
 - Examples: singlet(s), 2HDM/MSSM, NMSSM (2 doublets+singlet), Georgi-Machacek (1 doublet + 2 triplets)
 - Charged scalars may be included as well

Searching for Heavy Higgs bosons

- MSSM Higgs bosons
 - MSSM has a 2HDM Higgs sector


5 Higgs bosons: 3 neutral : h /H /A and 2 charged: H^{+/-}

plus some additional constraints from SUSY


Just 2 parameters at lowest order: mA and $tan\beta$ (= ratio of Higgs vevs)

- Example: Neutral MSSM Higgs searches (charged Higgs searches exist but not covered here)
 - Production

Gluon-gluon fusion

Nikolaos Rompotis

Decay

Higgs decays to $\tau\tau$ are favoured for large parts of the parameter space

Searching for Heavy Higgs bosons

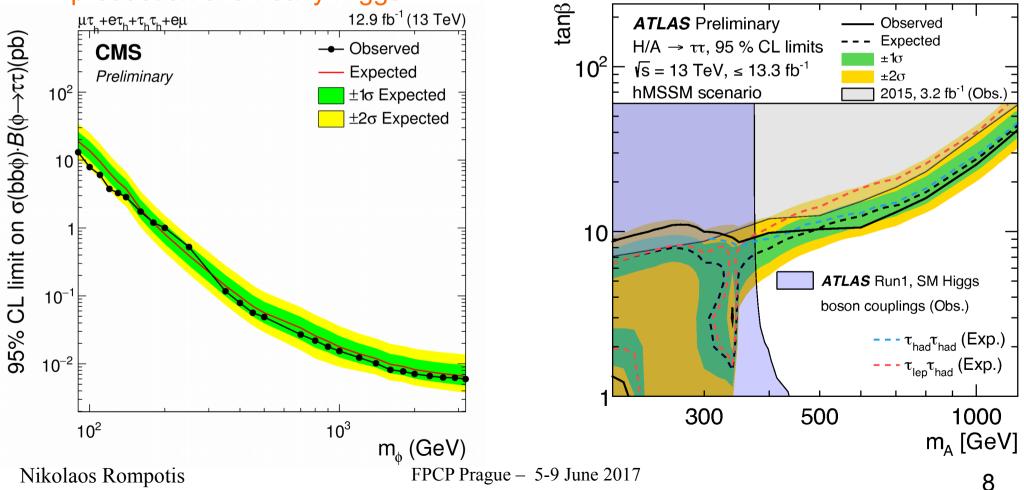
• Example of the neutral MSSM Higgs search CMS-PAS-HIG-16-037

Juis Juivate the definition "b-tag" and "no b-tag" (b-veto) itegoriee **Production** 12.9 fb⁻¹ (13 TeV) eu no b-tag 10⁹ ATLAS Preliminary Data dN/dM_T^{tot} (1/GeV) $H/A \rightarrow \tau \tau$ CMS $\sqrt{s} = 13 \text{ TeV}, 13.2 \text{ fb}$ Observation m₄= 600 GeV, tan β = 20 $Z \rightarrow \tau \tau$ 107 Preliminary $H/A \to \tau_{had} \tau_{had}$ Multi-jet Z→II $Z \rightarrow \tau \tau$ b-tag Electroweak . 10⁵ $W \rightarrow \tau v + jets$ QCD tt, single top Others 10³ Background uncertainty Uncertainty $h,H,A \rightarrow \tau \tau$ ·· Pre-fit background m^{mod+} 10 m₄=1000 GeV, tanβ=50 10-10⁻² 10^{-3} 10⁻⁵ 1.5 Obs/Exp Data/Pred 1.0 1:1 1:1 1:1 1:1 0.5 150 200 250 300 350 400 450 500 550 600 10^{2} 10³ 10 m^{tot} [GeV] m^{tot}_T (GeV)

$$m_{\rm T}^{\rm tot} = \sqrt{m_{\rm T}^2(E_{\rm T}^{\rm miss}, \tau_1) + m_{\rm T}^2(E_{\rm T}^{\rm miss}, \tau_2) + m_{\rm T}^2(\tau_1, \tau_2)}$$

Nikolaos Rompotis

FPCP Prague - 5-9 June 2017

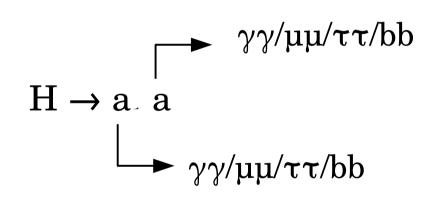


... or In various MSSM scenarios

Searching for Heavy Higgs bosons

Interpreting the search

as cross section limits for the production of a heavy Higgs



Searching for light Higgs bosons

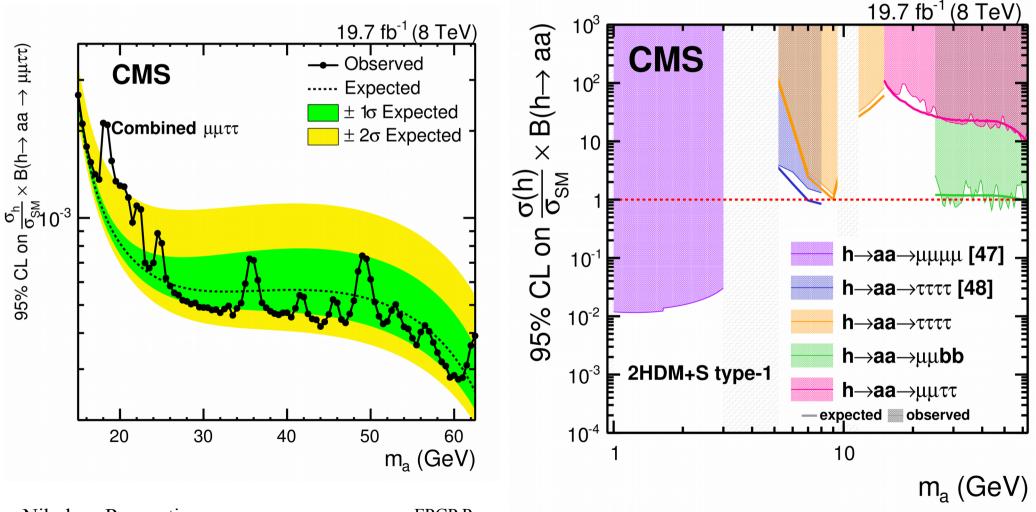
 In next-to-MSSM or various extensions with singlets there are light Higgs bosons to which the 125-GeV Higgs can decay to
 According to the mass of the light Higgs

19.7 fb⁻¹ (8 TeV) Events / (6.5 GeV CMS Signal model Bkg. model 102 **ZZ** component **Red.** component Bkg. uncertainty Observed 10 $H \rightarrow aa \rightarrow \mu\mu\tau\tau$ 10 20 30 50 40 60 m_{uu} (GeV)

various decay channels are possible

CMS has recently submitted a search on 8 TeV data for $H(125) \rightarrow aa \rightarrow \tau \tau \tau \tau / \mu \mu \tau \tau / \mu \mu bb$

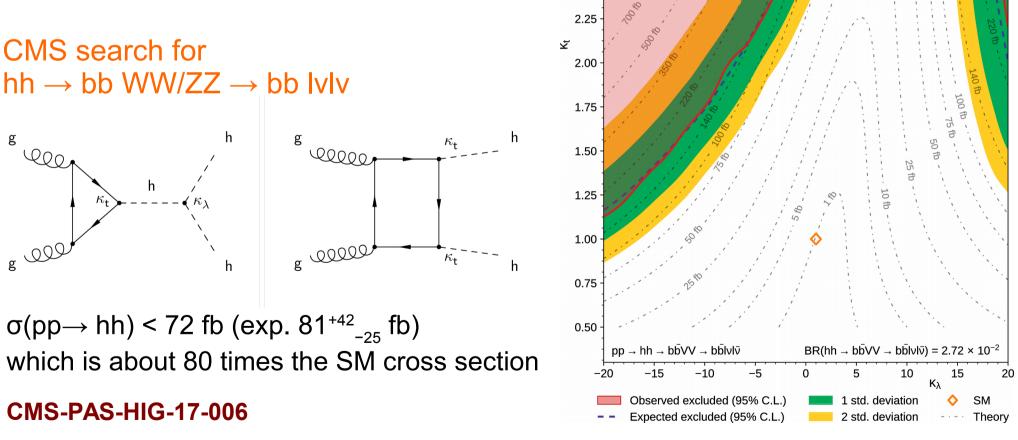
arXiv:1701.02032


Nikolaos Rompotis

Searching for light Higgs bosons

Results of the search

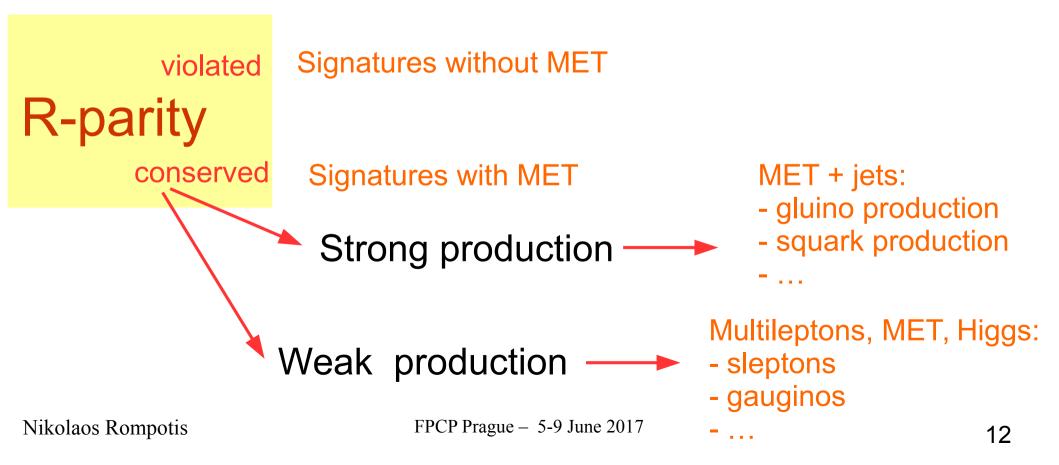
Nikolaos Rompotis


FPCP Prague – 5-9 June 201 /

Searching for exotic properties

Di-Higgs production is rare in the SM, however, an anomalously large rate can be evidence of a composite 125-GeV Higgs boson

Nikolaos Rompotis

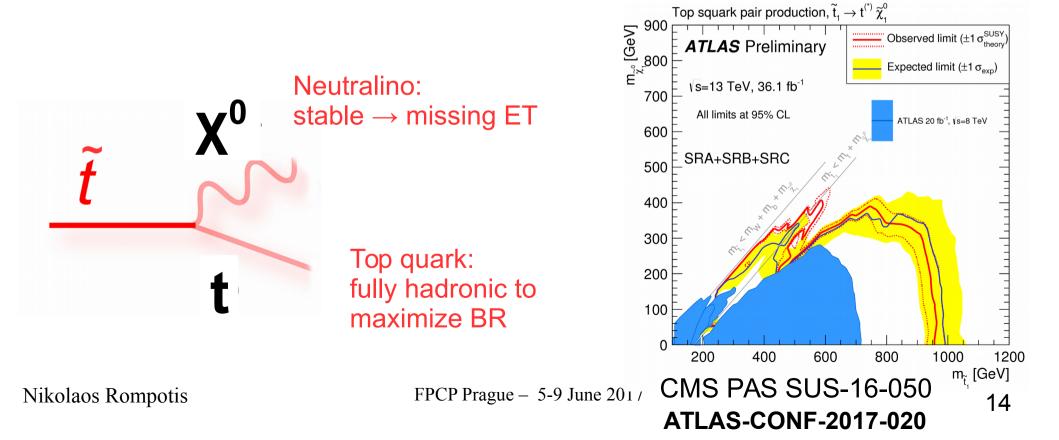

FPCP Prague - 5-9 June 2017

Supersymmetry (SUSY)

- SUSY is the most studied individual framework for BSM physics at colliders
- Basic concepts for SUSY searches: A very rough guide

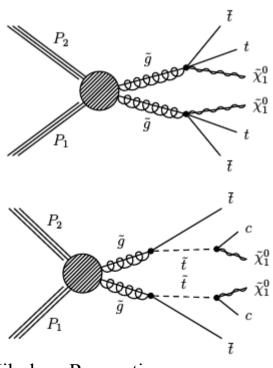
Breaking news: SUSY to be found soon!

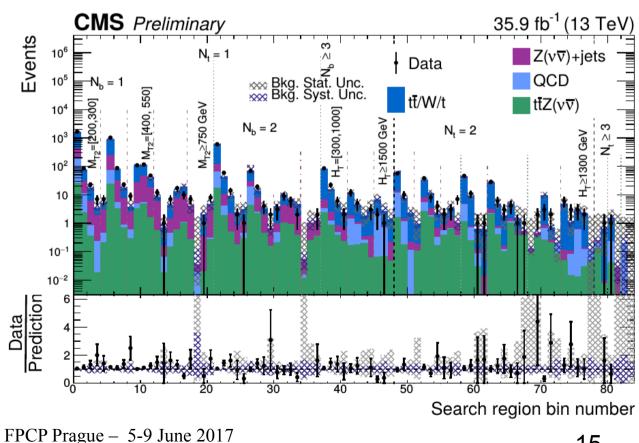
ATLAS and CMS representative makes an official wish for supersymmetry discovery in Charles Bridge Prague.



Top and SUSY

- Top quarks are very important in SUSY searches:
 - Related to top squark search, which is the quintessential SUSY search: stops have to be light for a natural Higgs boson mass

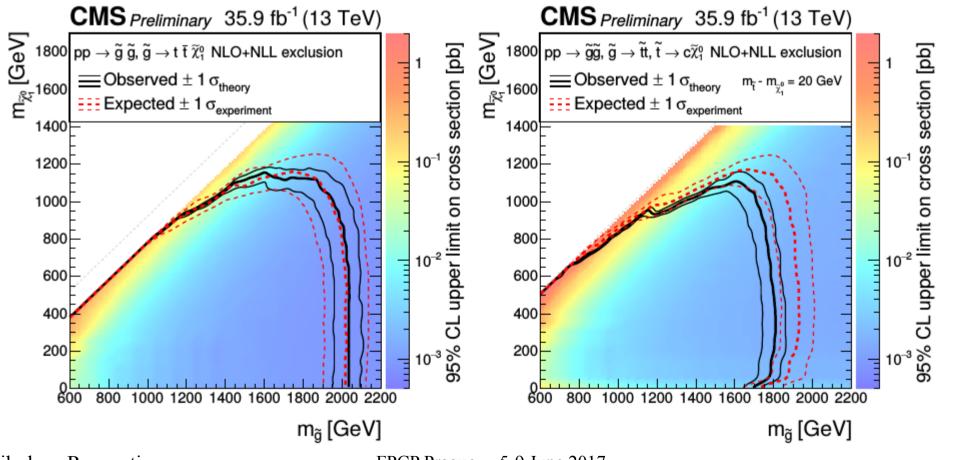



15

Top-tagging for SUSY

- Final states with top can be also used to look for other **SUSY** particles **CMS PAS SUS-16-050**
 - This CMS search has defined a dedicated top tagger to improve sensitivity

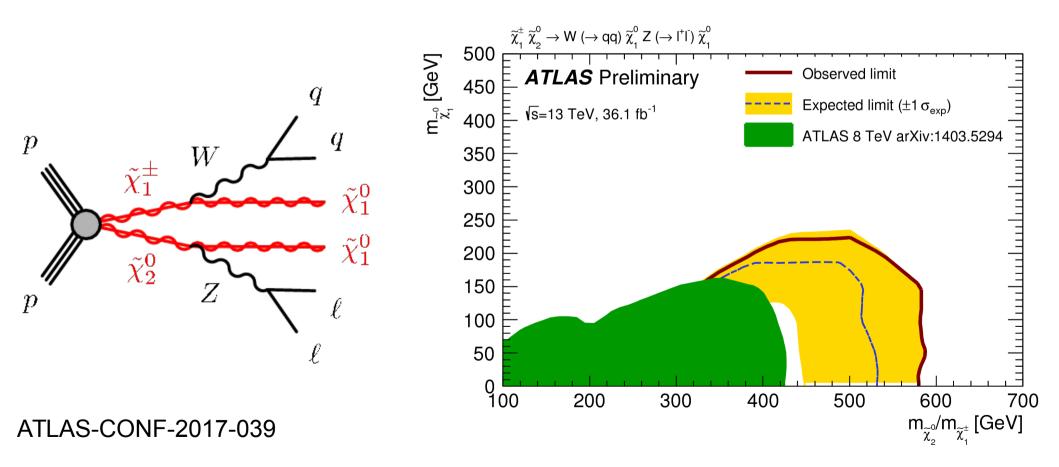
Nikolaos Rompotis



Top-tagging for SUSY

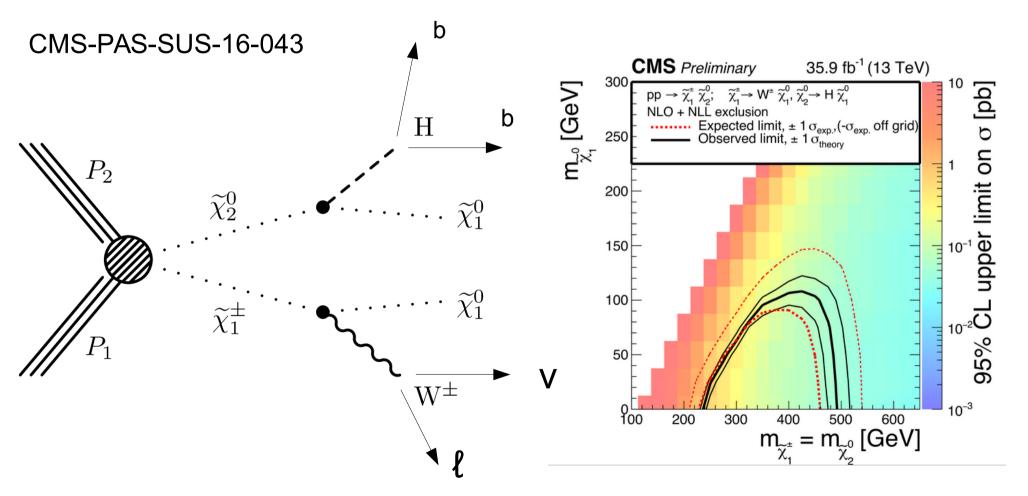
• Similar exclusion plots for gluinos are produced (in addition to stop quark vs χ_0): CMS PAS SUS-16-050

Nikolaos Rompotis


FPCP Prague – 5-9 June 2017

Weak SUSY production examples

Electroweak SUSY searches: suppressed due to small couplings, but much usually cleaner due to the leptons in final state

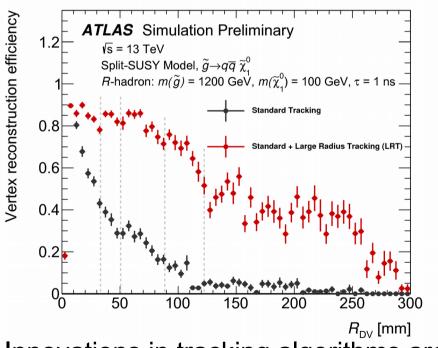


Weak SUSY production examples

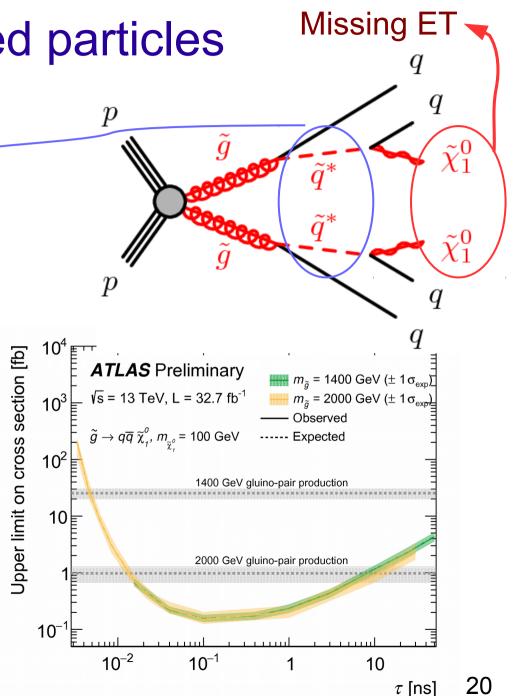
Electroweak SUSY searches: suppressed due to small couplings, but much usually cleaner due to the leptons in final state

Long-Lived particles

- Very interesting
 - Many theories, not just SUSY, have models with long-lived particles (e.g. hidden valley models): SUSY/Exotics boundary
- ... but very challenging
 - The LHC experiments are designed to look for objects produced close to the interaction point and within a small time window



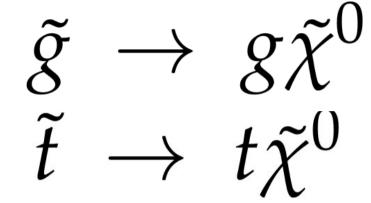
Long-lived gluinos leading to displaced vertices

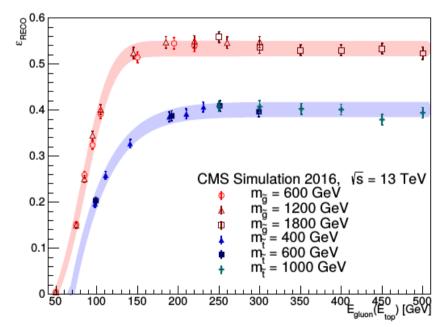

ATLAS-CONF-2017-026

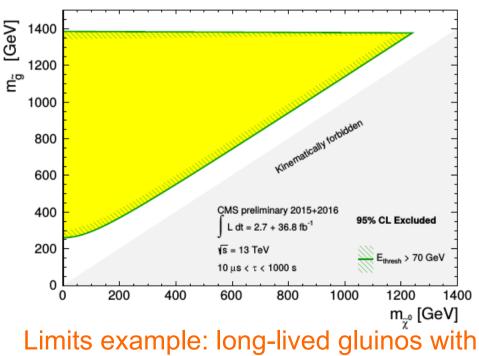
Innovations in tracking algorithms are needed to efficiently deal with displaced vertices

Nikolaos Rompotis

FPCP Prague






Long-Lived particles CMS-PAS-EXO-16-004

Search for long-lived SUSY partners that decay in the calorimeters

Efficiency to reconstruct the original gluino/top squark vs gluon/top energy Nikolaos Rompotis FPCP Pra

Limits example: long-lived gluinos with lifetimes between 10 µs and 1000 s

FPCP Prague - 5-9 June 2017

ATLAS Preliminary

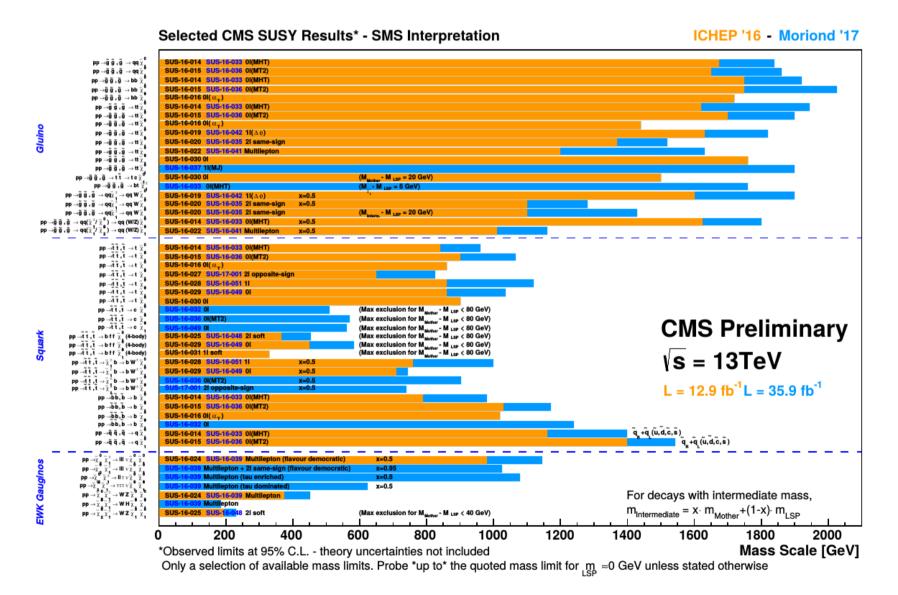
LHC SUSY searches at a glance

ATLAS SUSY Searches* - 95% CL Lower Limits May 2017

OF

<u>UNIVERSITY</u>

	Model	e, μ, τ, γ	′ Jets	E ^{miss} _T	∫ <i>L dt</i> [ft	⁻¹] Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$ \begin{array}{c} \text{MSUGRA/CMSSM} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \bar{x}_{1}^{0} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \bar{x}_{1}^{0} \\ (\text{compressed}) \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q} \bar{x}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{y} \bar{y} \bar{x}_{1}^{0} \\ \bar{g}\bar{g}\bar{g}, \bar{g} \rightarrow q \bar{y} \bar{y} \bar{x}_{1}^{0} \\ \bar{g}\bar{g}\bar{g}, \bar{g} \rightarrow q \bar{y} \bar{y} \bar{y} \bar{y} \bar{y} \\ \bar{g}\bar{g}\bar{g}, \bar{g} \rightarrow q \bar{y} \bar{y} \bar{y} \\ \bar{g}\bar{g}\bar{g}, \bar{g} \rightarrow q \bar{y} \bar{y} \bar{y} \\ \bar{g}\bar{g}\bar{g}, \bar{g} \rightarrow q \bar{y} \\ \bar{g}\bar{g}\bar{g}\bar{g}, \bar{g} \rightarrow q \bar{y} \\ \bar{g}\bar{g}\bar{g}\bar{g}\bar{g}, \bar{g} \rightarrow q \bar{y} \\ \bar{g}\bar{g}\bar{g}\bar{g}\bar{g}, \bar{g} \rightarrow q \bar{y} \\ \bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{g}$	$\begin{array}{c} 0-3 \ e, \mu/1-2 \ \tau \\ 0 \\ mono-jet \\ 0 \\ 3 \ e, \mu \\ 0 \\ 1-2 \ \tau + 0-1 \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 / 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 7-11 jets 7-11 jets 0 -2 jets 2 jets mono-jet	b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 36.1 3.2 36.1 36.1 36.1 36.1 3.2 20.3 13.3 20.3 20.3	\$\vec{v}\$ \$\vec{v}\$ <t< th=""><th>1.85 TeV $m(\tilde{q})=m(\tilde{g})$ 1.57 TeV $m(\tilde{\chi}_{1}^{0})<200 \text{ GeV}, m(1^{st} \text{ gen.} \tilde{q})=m(2^{nd} \text{ gen.} \tilde{q})$ 1.57 TeV $m(\tilde{\chi}_{1}^{0})<200 \text{ GeV}, m(1^{st} \text{ gen.} \tilde{q})=m(2^{nd} \text{ gen.} \tilde{q})$ 1.65 TeV $m(\tilde{\chi}_{1}^{0})<200 \text{ GeV}$ 2.02 TeV $m(\tilde{\chi}_{1}^{0})<200 \text{ GeV}$ 2.01 TeV $m(\tilde{\chi}_{1}^{0})<200 \text{ GeV}$ 1.8 TeV $m(\tilde{\chi}_{1}^{0})<200 \text{ GeV}$ 2.0 TeV $m(\tilde{\chi}_{1}^{0})<400 \text{ GeV}$ 2.0 TeV $m(\tilde{\chi}_{1}^{0})<400 \text{ GeV}$ 2.0 TeV $m(\tilde{\chi}_{1}^{0})<950 \text{ GeV}, cr(NLSP)<0.1 \text{ mm}, \mu<0$ $m(\tilde{\chi}_{1}^{0})<950 \text{ GeV}, cr(NLSP)<0.1 \text{ mm}, \mu<0$ <math>m(\tilde{\chi}_{1}^{0})>800 \text{ GeV} 37 TeV $m(\tilde{\chi}_{1}^{0})>950 \text{ GeV}, cr(NLSP)<0.1 \text{ mm}, \mu>0$ $m(\tilde{\chi}_{1}^{0})>1.8 \times 10^{-4} \text{ eV}, m(\tilde{g})=m(\tilde{g})=1.5 \text{ TeV}$ </math></th><th>1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2017-022 ATLAS-CONF-2017-030 ATLAS-CONF-2017-033 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518</th></t<>	1.85 TeV $m(\tilde{q})=m(\tilde{g})$ 1.57 TeV $m(\tilde{\chi}_{1}^{0})<200 \text{ GeV}, m(1^{st} \text{ gen.} \tilde{q})=m(2^{nd} \text{ gen.} \tilde{q})$ 1.57 TeV $m(\tilde{\chi}_{1}^{0})<200 \text{ GeV}, m(1^{st} \text{ gen.} \tilde{q})=m(2^{nd} \text{ gen.} \tilde{q})$ 1.65 TeV $m(\tilde{\chi}_{1}^{0})<200 \text{ GeV}$ 2.02 TeV $m(\tilde{\chi}_{1}^{0})<200 \text{ GeV}$ 2.01 TeV $m(\tilde{\chi}_{1}^{0})<200 \text{ GeV}$ 1.8 TeV $m(\tilde{\chi}_{1}^{0})<200 \text{ GeV}$ 2.0 TeV $m(\tilde{\chi}_{1}^{0})<400 \text{ GeV}$ 2.0 TeV $m(\tilde{\chi}_{1}^{0})<400 \text{ GeV}$ 2.0 TeV $m(\tilde{\chi}_{1}^{0})<950 \text{ GeV}, cr(NLSP)<0.1 \text{ mm}, \mu<0$ $m(\tilde{\chi}_{1}^{0})<950 \text{ GeV}, cr(NLSP)<0.1 \text{ mm}, \mu<0$ $m(\tilde{\chi}_{1}^{0})>800 \text{ GeV} 37 TeV m(\tilde{\chi}_{1}^{0})>950 \text{ GeV}, cr(NLSP)<0.1 \text{ mm}, \mu>0 m(\tilde{\chi}_{1}^{0})>1.8 \times 10^{-4} \text{ eV}, m(\tilde{g})=m(\tilde{g})=1.5 \text{ TeV} $	1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2017-022 ATLAS-CONF-2017-030 ATLAS-CONF-2017-033 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
۶ [,] gen. § med.	$\begin{array}{c} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{\chi}_{1}^{1} \end{array}$	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	2 2	1.92 TeV m(k ²)/s600 GeV 1.97 TeV m(k ²)/s200 GeV .37 TeV m(k ²)/s200 GeV	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
3 ^{re} gen. squarks direct production	$ \begin{split} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \to b\tilde{k}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \to v\tilde{k}_{1}^{+} \\ \tilde{i}_{1}\tilde{b}_{1}, \tilde{b}_{1} \to v\tilde{k}_{1}^{+} \\ \tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{1} \to b\tilde{k}_{1}^{0} \text{ or } \tilde{k}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{1} \to \tilde{k}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{2}, \tilde{i}_{2} \to \tilde{i}_{1} \to \tilde{k}_{2} \\ \tilde{i}_{2}\tilde{i}_{2}, \tilde{i}_{2} \to \tilde{i}_{1} + Z \\ \tilde{i}_{2}\tilde{i}_{2}, \tilde{i}_{2} \to \tilde{i}_{1} + h \end{split} $	$\begin{array}{c} 0\\ 2\ e,\mu\ (\text{SS})\\ 0\text{-}2\ e,\mu\\ 0\text{-}2\ e,\mu\\ 0\\ 2\ e,\mu\ (Z)\\ 3\ e,\mu\ (Z)\\ 1\text{-}2\ e,\mu \end{array}$	2 b 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 4 b		36.1 36.1 .7/13.3 0.3/36.1 3.2 20.3 36.1 36.1	\$\vec{b}_1\$ 950 GeV \$\vec{b}_1\$ 275-700 GeV \$\vec{1}_1\$ 117-170 GeV 200-720 GeV \$\vec{1}_1\$ 90-198 GeV 205-950 GeV \$\vec{1}_1\$ 90-323 GeV \$\vec{1}_1\$ \$\vec{1}_1\$ 90-323 GeV \$\vec{1}_2\$ \$\vec{1}_2\$ \$\vec{1}_2\$ \$\vec{2}_2\$ \$\vec{1}_2\$ \$\vec{2}_2\$ \$\vec{2}_2\$ \$\vec{1}_2\$ \$\vec{2}_2\$ \$\vec{2}_2\$	$\begin{array}{c} m(\tilde{k}_{1}^{0}){\sim}{+}20~\text{GeV} \\ m(\tilde{k}_{1}^{0}){\sim}{200~\text{GeV}}, m(\tilde{k}_{1}^{0}){=}~m(\tilde{k}_{1}^{0}){+}100~\text{GeV} \\ m(\tilde{k}_{1}^{0}){=}~2m(\tilde{k}_{1}^{0}), m(\tilde{k}_{1}^{0}){=}55~\text{GeV} \\ m(\tilde{k}_{1}^{0}){=}~16~\text{GeV} \\ m(\tilde{k}_{1}^{1}){-}m(\tilde{k}_{1}^{0}){=}5~\text{GeV} \\ m(\tilde{k}_{1}^{0}){=}15~\text{GeV} \\ m(\tilde{k}_{1}^{0}){=}0~\text{GeV} \\ m(\tilde{k}_{1}^{0}){=}0~\text{GeV} \\ m(\tilde{k}_{1}^{0}){=}0~\text{GeV} \end{array}$	ATLAS-CONF-2017-038 ATLAS-CONF-2017-030 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2017-020 1604.07773 1403.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
E W direct	$ \begin{array}{l} \tilde{\ell}_{1,\mathbf{k}}\tilde{\ell}_{1,\mathbf{k}},\tilde{\ell}\to\ell\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+}\to\tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+}\to\tilde{\ell}\nu(\ell\tilde{\nu}), \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0}\to\tilde{\ell}_{1}\nu_{0}^{-}\ell(\ell\tilde{\nu}), \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0}\to\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}(\ell\tilde{\nu}), \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0}\to\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}, \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0}\to\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}, \\ \tilde{\chi}_{2}^{+}\tilde{\chi}_{2}^{0}\to\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}, \\ \tilde{\chi}_{2}^{+}\tilde{\chi}_{2}^{0}\to\tilde{\chi}_{2}^{0}\tilde{\chi}_{2}^{0}, \\ \tilde{\chi}_{2}^{+}\tilde{\chi}_{2}^{0}\to\tilde{\chi}_{2}^{0}\tilde{\chi}_{2}^{0}, \\ \tilde{\eta}_{2}^{-}\tilde{\eta}_{2}^{0}\tilde{\chi}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 - 3 \ e, \mu \\ e, \mu, \gamma \\ 4 \ e, \mu \\ \gamma \tilde{G} 1 \ e, \mu + \gamma \\ \gamma \tilde{G} 2 \ \gamma \end{array}$	0 0 0-2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\label{eq:starting} \begin{array}{c} \mathfrak{m}(\tilde{\mathcal{K}}_{1}^{0})\!=\!0 & \mathfrak{m}(\tilde{\mathcal{K}}_{1}^{0})\!=\!0, \mathfrak{m}(\tilde{\mathcal{K}}, \tilde{\nu})\!=\!0.5(\mathfrak{m}(\tilde{\mathcal{K}}_{1}^{+})\!+\!\mathfrak{m}(\tilde{\mathcal{K}}_{1}^{0})) \\ \mathfrak{m}(\tilde{\mathcal{K}}_{1}^{0})\!=\!0, \mathfrak{m}(\tilde{\mathcal{K}}, \tilde{\nu})\!=\!0.5(\mathfrak{m}(\tilde{\mathcal{K}}_{1}^{+})\!+\!\mathfrak{m}(\tilde{\mathcal{K}}_{1}^{0})) \\ \mathfrak{m}(\tilde{\mathcal{K}}_{1}^{+})\!=\!\mathfrak{m}(\tilde{\mathcal{K}}_{2}^{0}), \mathfrak{m}(\tilde{\mathcal{K}}_{1}^{0})\!=\!0, \tilde{\mathcal{K}}(coupled \\ \mathfrak{m}(\tilde{\mathcal{K}}_{1}^{+})\!=\!\mathfrak{m}(\tilde{\mathcal{K}}_{2}^{0}), \mathfrak{m}(\tilde{\mathcal{K}}_{1}^{0})\!=\!0, \tilde{\mathcal{K}}(coupled \\ \mathfrak{m}(\tilde{\mathcal{K}}_{2}^{0})\!=\!\mathfrak{m}(\tilde{\mathcal{K}}_{2}^{0}), \mathfrak{m}(\tilde{\mathcal{K}}_{1}^{0})\!=\!0, \tilde{\mathcal{K}}(coupled \\ \mathfrak{m}(\tilde{\mathcal{K}}_{2}^{0})\!=\!\mathfrak{m}(\tilde{\mathcal{K}}_{2}^{0}), \mathfrak{m}(\tilde{\mathcal{K}}, \tilde{\nu})\!=\!0.5(\mathfrak{m}(\tilde{\mathcal{K}}_{2}^{0})\!+\!\mathfrak{m}(\tilde{\mathcal{K}}_{1}^{0})) \\ c c r<\!1 mm \\ c r<\!1 mm \end{array}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-035 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5066 1507.05493 1507.05493
Long-IIVed particles	$\begin{array}{l} \label{eq:constraints} \begin{array}{l} \text{Direct} \tilde{X}_1^{\dagger}\tilde{X}_1^{\top} \text{prod., long-lived} \tilde{X}_1^{\dagger} \\ \text{Direct} \tilde{X}_1^{\dagger}\tilde{X}_1^{\top} \text{prod., long-lived} \tilde{X}_1^{\pm} \\ \text{Stable, stopped} \tilde{g} \text{R-hadron} \\ \text{Stable} \tilde{g} \text{R-hadron} \\ \text{Metastable} \tilde{g} \text{R-hadron} \\ \text{GMSB, stable} \tilde{\tau}, \tilde{X}_1^{0} {\rightarrow} \tilde{\tau}(\tilde{e}, \tilde{\mu}) {+} \tilde{\tau}(e, \mu) \\ \text{GMSB, } \tilde{X}_1^{0} {\rightarrow} \tilde{\sigma}, \text{long-lived} \tilde{X}_1^{0} \\ \tilde{g}\tilde{g}, \tilde{X}_1^{0} {\rightarrow} {eve}/ew/\mu \nu \\ \text{gGM} \tilde{g}\tilde{g}, \tilde{X}_1^{0} {\rightarrow} Z\tilde{G} \end{array}$	Disapp. trk dE/dx trk 0 trk dE/dx trk $1-2 \mu$ 2γ displ. $ee/e\mu/\mu$ displ. vtx + je	- 1-5 jets - - - - μμ -	Yes Yes - - - Yes - Yes	36.1 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	X [±] 430 GeV X [±] 495 GeV Z 850 GeV Z 850 GeV Z 537 GeV X ⁰ 537 GeV X ⁰ 1.0 TeV X ⁰ 1.0 TeV	$\begin{array}{c} m(\tilde{k}_{1}^{2})\!-\!n(\tilde{k}_{1}^{0})\!-\!160\;MeV,\tau(\tilde{k}_{1}^{2})\!=\!0.2\;ns\\ m(\tilde{k}_{1}^{2})\!-\!n(\tilde{k}_{1}^{0})\!-\!160\;MeV,\tau(\tilde{k}_{1}^{2})\!<\!15\;ns\\ m(\tilde{k}_{1}^{0})\!=\!100\;GeV,10\;\mus\!<\!\tau(\tilde{g})\!<\!1000\;s\\ \textbf{1.57\;TeV}\\ \mathbf{1.57\;TeV}\\ m(\tilde{k}_{1}^{0})\!=\!100\;GeV,\tau\!>\!10\;ns\\ 10\!<\!tan_{\beta}\!<\!50\\ 1\!<\!\tau(\tilde{k}_{1}^{0})\!<\!3\;ns,SPS8\;model\\ 7\;<\!cr(\tilde{k}_{1}^{0})\!<\!740\;mm,m(\tilde{g})\!=\!1.3\;TeV\\ 6\;<\!cr(\tilde{k}_{1}^{0})\!<\!400\;mm,m(\tilde{g})\!=\!1.1\;TeV\\ \end{array}$	ATLAS-CONF-2017-017 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162
RPV	$ \begin{array}{c} LFV \ p_{\mathcal{D}} \rightarrow \tilde{r}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow eev, e\mu v, \mu\mu v \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau rv_{e}, e\tau v_{\tau} \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow qq\tilde{q} \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow q\tilde{q} \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow q\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}\tilde{\chi}_{1}^{0}, \tilde{t}_{1}^{-} \rightarrow qqq \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow \tilde{t}\tilde{t}, \tilde{t}_{1}^{-} \rightarrow bs \\ \tilde{t}_{1}\tilde{t}, \tilde{t}_{1}^{-} \rightarrow bs \\ \tilde{t}_{1}\tilde{t}, \tilde{t}_{1}^{-} \rightarrow b\ell \end{array} $	0 4 1 e,μ 8	- 0-3 b - - 1-5 large- <i>R</i> je 3-10 jets/0-4 3-10 jets/0-4 2 jets + 2 b 2 b	ets - - b - - b -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 36.1	\$\vec{v}\$ <	$\begin{array}{c} m(\tilde{k}_{1}^{0})\!\!>\!\!0.2\!\times\!m(\tilde{k}_{1}^{*}),\lambda_{133}\!\neq\!0\\ BR(t)\!=\!BR(k)\!\!=\!BR(c)\!\!=\!\!0\%\\ \textbf{1.55 TeV} \qquad m(\tilde{k}_{1}^{0})\!\!=\!\!B0GeV\\ \textbf{2.1 TeV} \qquad m(\tilde{k}_{1}^{0})\!\!=\!\!1 TeV,\lambda_{112}\!\neq\!0\\ \textbf{1.65 TeV} \qquad m(\tilde{t}_{1})\!\!=\!1 TeV,\lambda_{323}\!\neq\!0\\ \end{array}$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 S-CONF-2016-022, ATLAS-CONF-2016-02 ATLAS-CONF-2017-036
thor	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i>	Yes	20.3	õ 510 GeV	$m(\tilde{\chi}_1^0)$ <200 GeV	1501.01325


phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Nikol

22

LHC SUSY searches at a glance

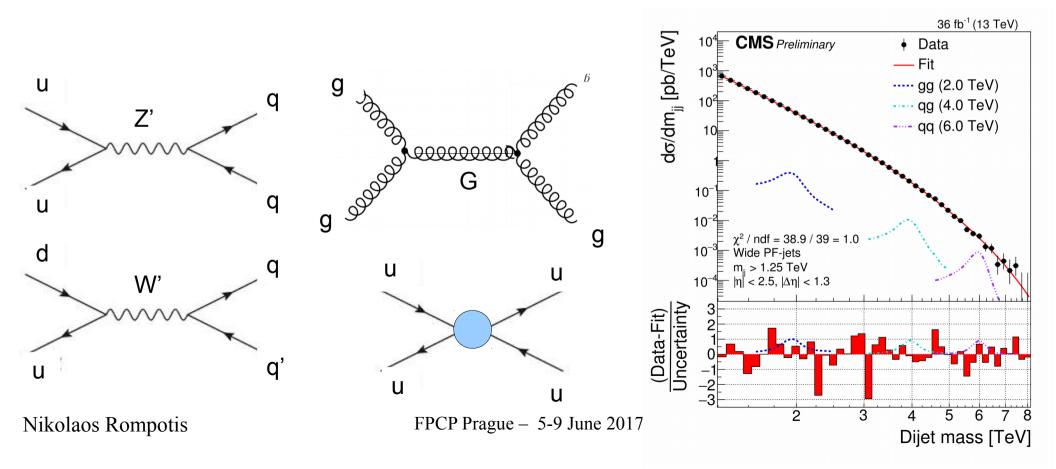
UNIVERSITY

VFR P(

0 F

Exotic searches

- Exotic searches include those extreme enough not to be included in BSM Higgs/SUSY
 - Often signature driven
 - Many of them inspired by Grand Unified Theories or related topics
 - e.g. search for heavy vector bosons, see-saw models etc, but at TeV (and not GUT) scale

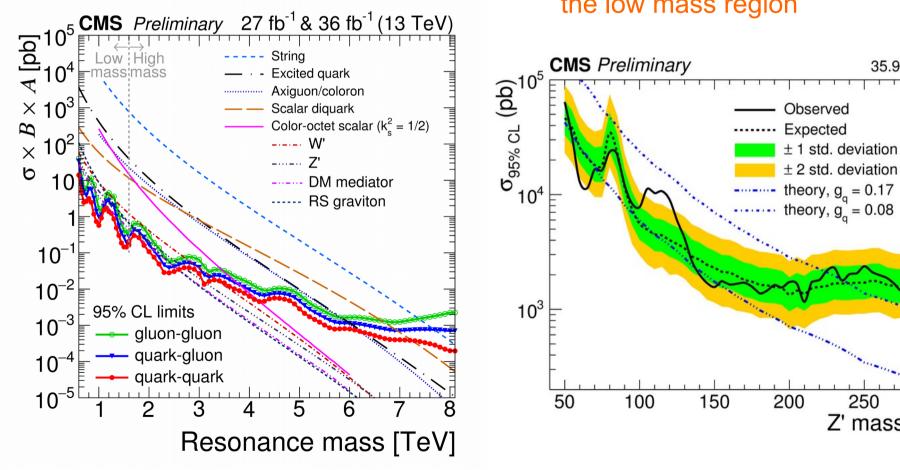


Di-jet spectrum

CMS PAS-EXO-16-056 CMS PAS-EXO-17-001 ATLAS arxiv:1703.09127

- Examining the tail of the di-jet mass distribution
 - Many BSM theories include resonances that decay to di-jets
 - Non-resonant phenomena (e.g. quark substructure)

Di-jet spectrum


CMS PAS-EXO-16-056 CMS PAS-EXO-17-001 ATLAS arxiv:1703.09127

250

Z' mass (GeV)

35.9 fb⁻¹ (13 TeV)

Generic limits compared to predictions for various models

CMS extension of the search in the low mass region

Nikolaos Rompotis

300

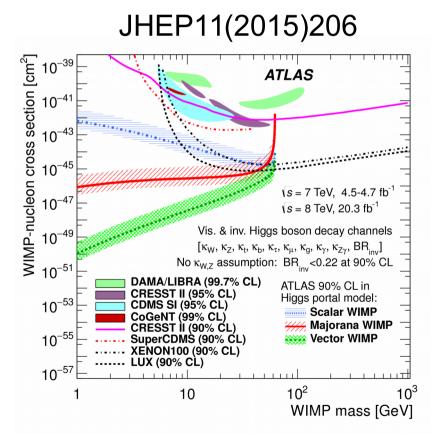
TeV scale

black holes

Di-jet spectrum

Nikolaos Rompotis

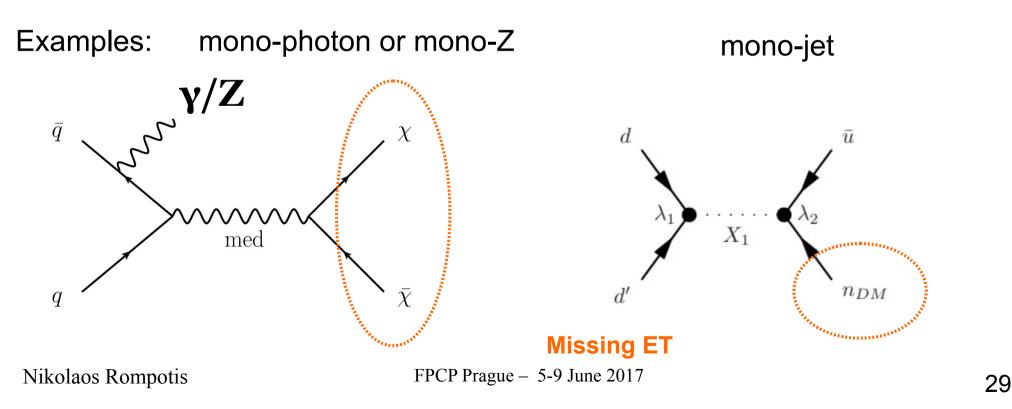
FPCP Prague - 5-9 June 2017



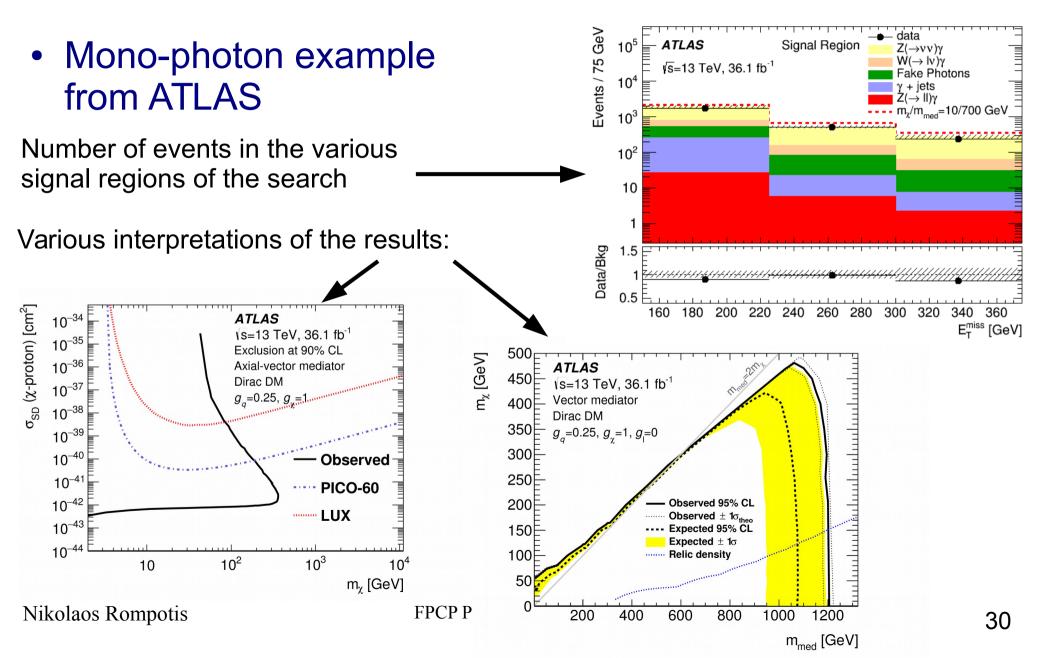
Dark matter searches

- A new weakly interacting massive particle that may explain the "WIMP miracle" in cosmology has been searched for at the LHC in many different channels
- Example:
 - Higgs boson to dark matter decays, *directly* or *indirectly* (though precision measurements of the couplings)

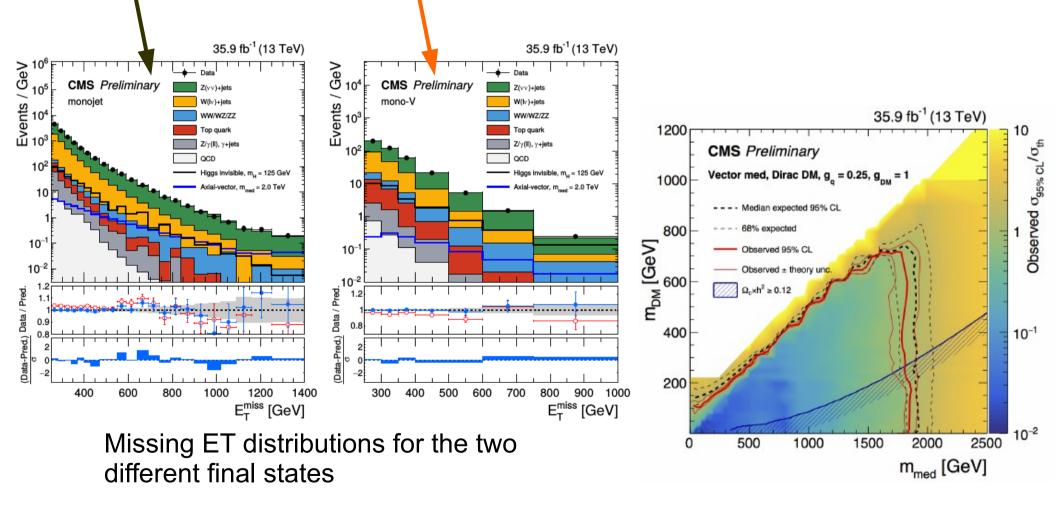
Example from ATLAS Run-I Higgs couplings; similar results from CMS as well

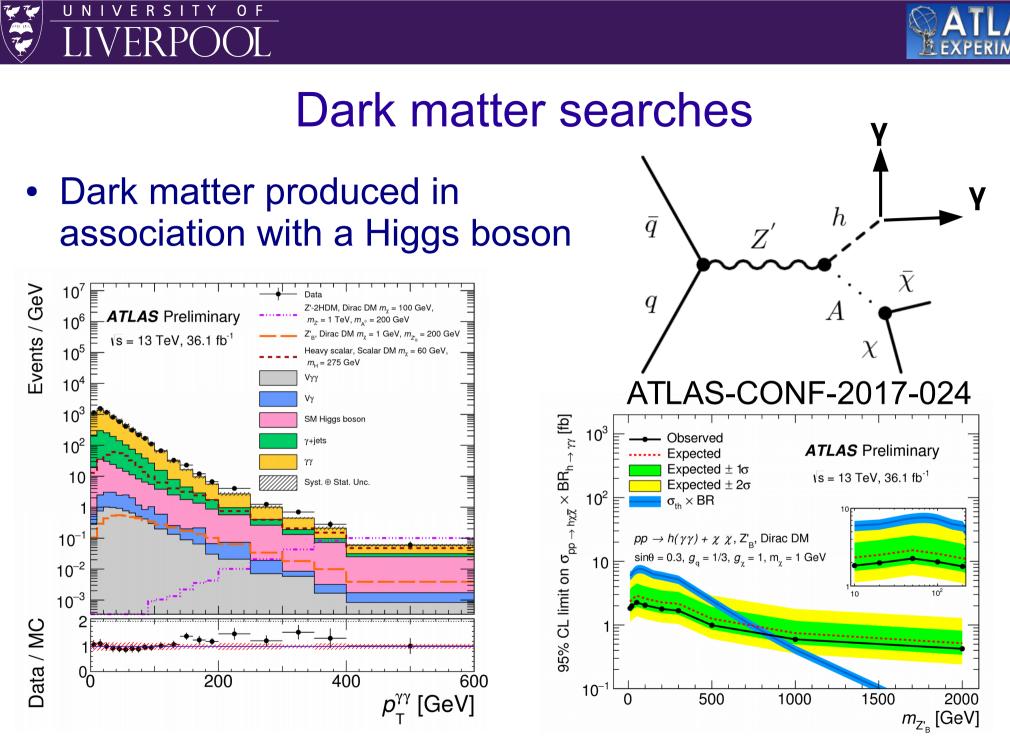


Dark matter searches


- One direct way to look for Dark Matter (DM) is to look for mono-X production, where X = a usual object
 - Dark matter recoils against the "mono-object"

Dark matter searches arXiv:1704.03848





Dark matter searches CMS-PAS-EXO-16-048

Mono jet / mono vector boson example from CMS

Nikolaos Rompotis

FPCP Prague - 5-9 June 2017

b

b

Х

Observed limit

Expected limit ±1σ

 $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$

 $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$

2500

m_{z'} [GeV]

h

Z

Dark matter searches

 \bar{q}

q

ATLAS Preliminary

Z'-2HDN simplified model

 $800 - \tan\beta = 1, g_2 = 0.8, m_y = 100 \text{ GeV}$

Mono-h(bb), All limits at 95 % CL

1000

1500

2000

√s = 13 TeV, 36.1 fb⁻¹

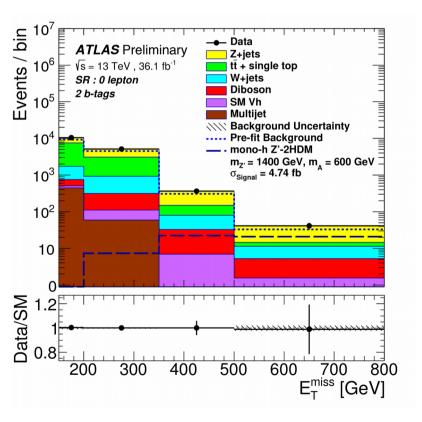
1000

900

700

600

500


400

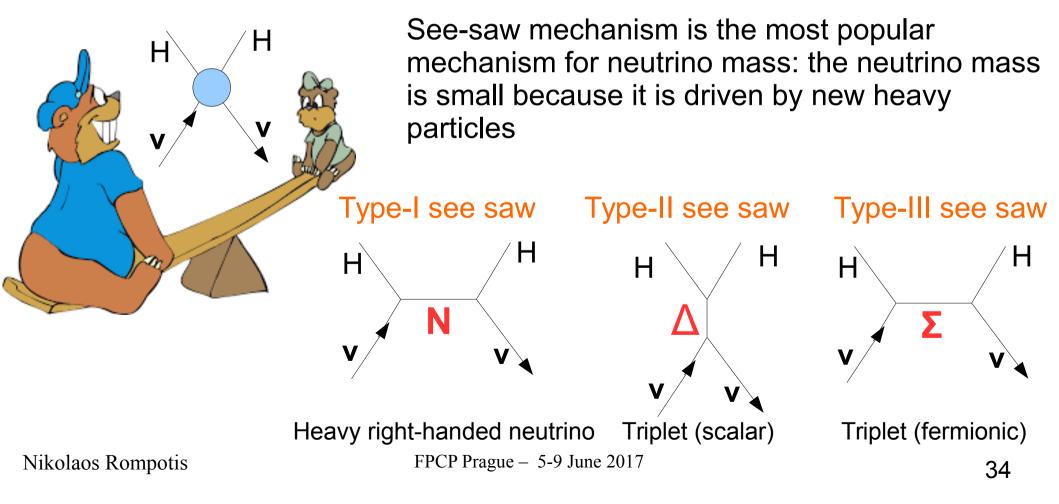
300

500

m_A [GeV]

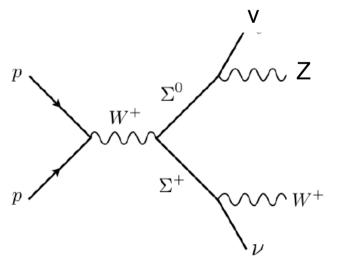
 Dark matter produced in association with a Higgs boson

ATLAS-CONF-2017-028

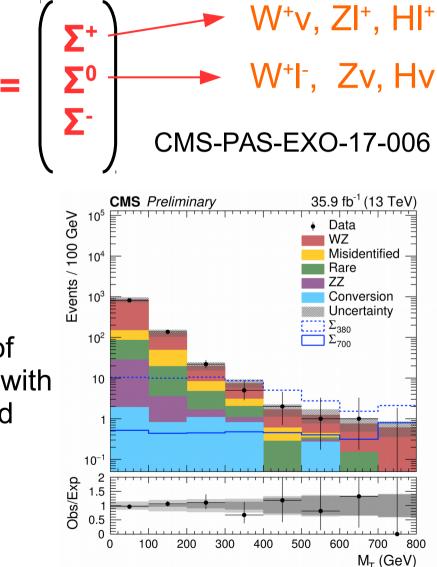

FPCP Prague – 5-9 June 2017

See-saw inspired searches

- Massive neutrinos are direct evidence for BSM physics!
 - Neutrino mass generation is an open question



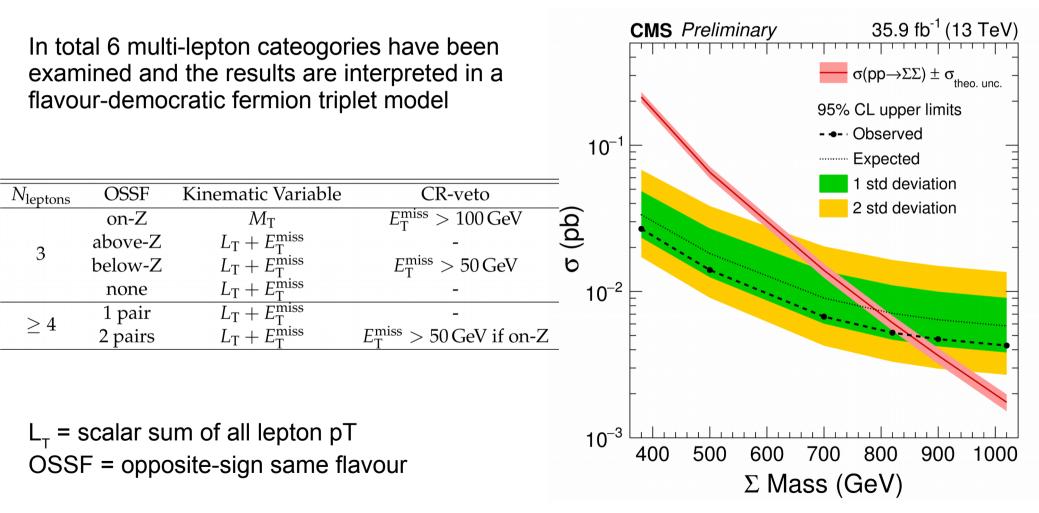
See-saw inspired searches

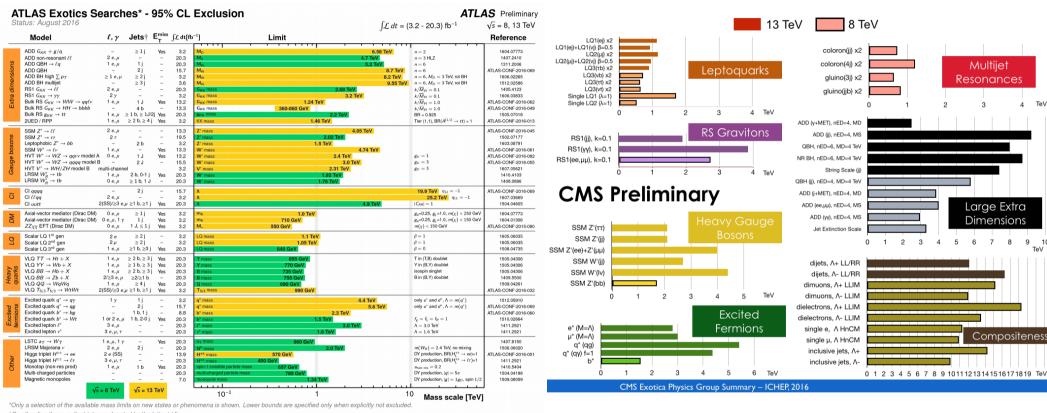

CMS type-III inspired search

Triplet with heavy fermions that are produced in pairs weakly and decay to various multi-lepton final states

Example of a final state considered:

3 leptons with 2 of them compatible with a $Z \rightarrow$ II decay and MET > 100 GeV


Nıkolaos Rompotis


See-saw inspired searches

CMS-PAS-EXO-17-006

LHC exotics at a glance

†Small-radius (large-radius) jets are denoted by the letter j (J).

UNIVERSITY

VFRPC

0 F

See the links below for more summary plots!

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/index.html#ATLAS_Exotics_Summary

http://cms-results.web.cern.ch/cms-results/public-results/publications/

Nikolaos Rompotis

FPCP Prague – 5-9 June 2017



Summary

 Only very few results could be presented here: there is a wealth of ATLAS and CMS results:

http://cms-results.web.cern.ch/cms-results/public-results/publications/

https://twiki.cern.ch/twiki/bin/view/AtlasPublic

No discovery yet beyond that, but do not rush into making conclusions!

Concluding remark

No BSM? Beware Historical Hubris

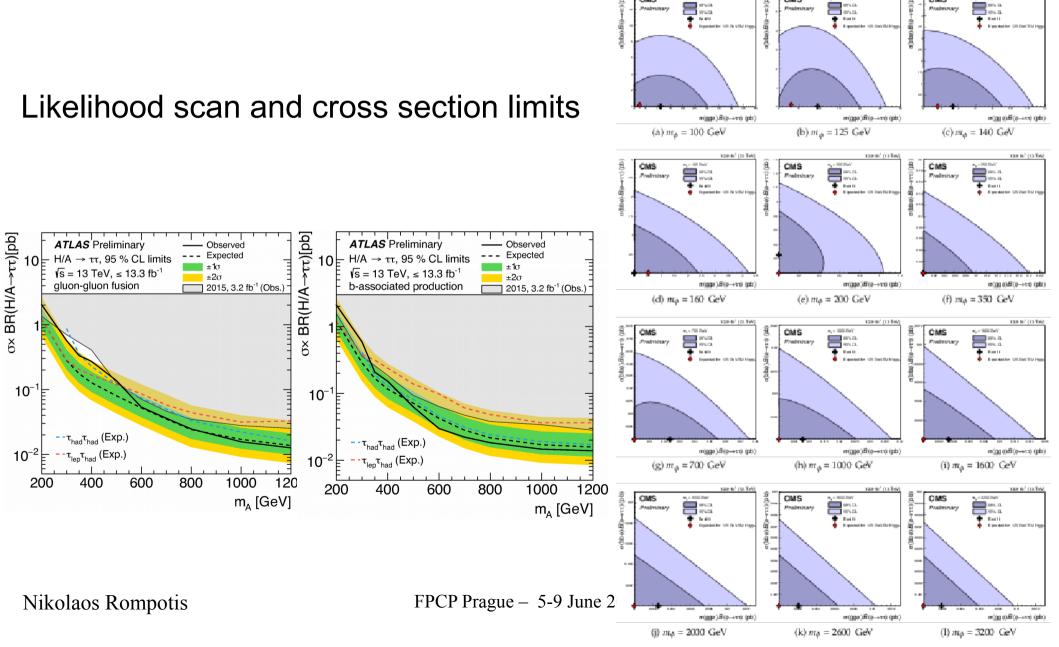
- "So many centuries after the Creation, it is unlikely that anyone could find hitherto unknown lands of any value" - Spanish Royal Commission, rejecting Christopher Columbus proposal to sail west, < 1492
- "The more important fundamental laws and facts of physical science have all been discovered" – Albert Michelson, 1894
- "There is nothing new to be discovered in physics now. All that remains is more and more precise measurement" - Lord Kelvin, 1900
- "Is the End in Sight for Theoretical Physics?" Stephen Hawking, 1980

From the theory summary talk in LHCP 2014 by J. Ellis Nikolaos Rompotis FPCP Prague – 5-9 June 2017

Additional slides

Nikolaos Rompotis

12F B/ D2/TeV

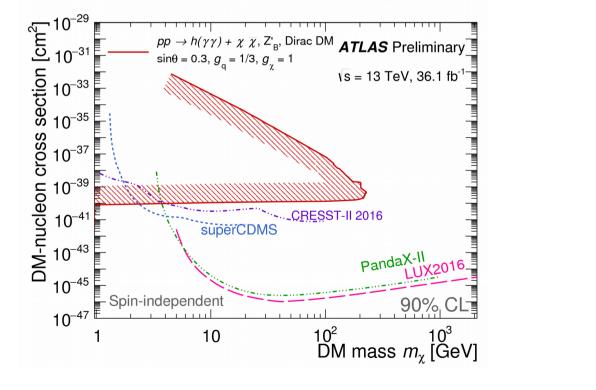

120-0212-0204

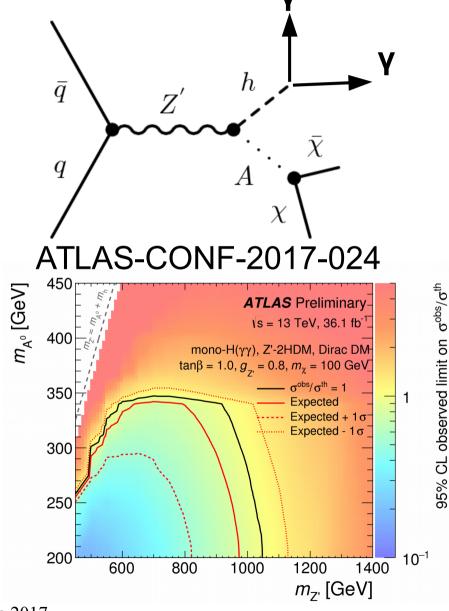
CMS

CMS

More on MSSM TT result

CMS

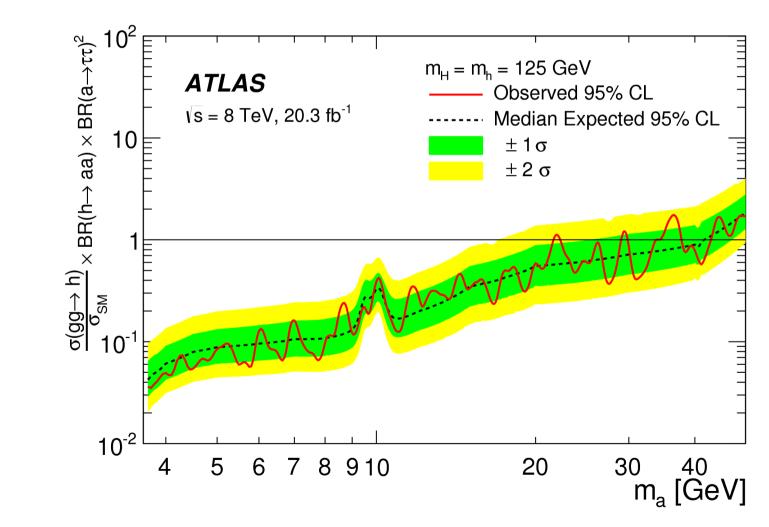




Dark matter searches

• Dark matter produced in association with a Higgs boson

Interpretation in a Z'-2HDM scenario

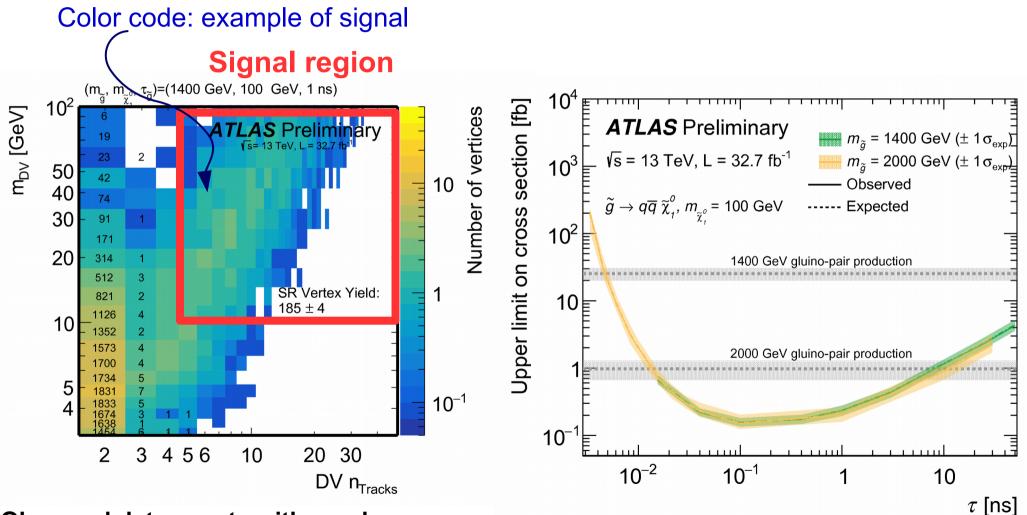


Nikolaos Rompotis

ATLAS Run-I h \rightarrow aa \rightarrow µµтт result

arXiv:1505.01609

Nikolaos Rompotis


FPCP Prague – 5-9 June 2017

Long-Lived particles

ATLAS-CONF-2017-026

Observed data events with numbers

Nikolaos Rompotis

FPCP Prague - 5-9 June 2017

44