

Charm hadron decay @ BESIII

Xiaokang Zhou (on behalf of the BESIII Collaboration) University of Science and Technology of China

FPCP17 Prague Jun.5~9 2017

Outline

Introduction

D hadronic decays

- Absolute BR of $D^0 \rightarrow K_S/K_L \pi^0(\pi^0)$
- y_{CP} Measurement from $D^0 \rightarrow K_S/K_L \pi^0$
- BF measurements of some D⁰⁽⁺⁾→PP
- BF measurements of $D^{0(+)} \rightarrow 2K_S + X$
- Λ_C hadronic decays
 - BRs of $\Lambda_C^+ \rightarrow \Sigma^- \pi^+ \pi^+$ and $\Lambda_C^+ \rightarrow \Sigma^- \pi^+ \pi^+ \pi^0$
 - $\Lambda_{C}^{+} \rightarrow p\pi^{+}\pi^{+}$ and $\Lambda_{C}^{+} \rightarrow pK^{+}K^{-}$
 - $\Lambda_C^+ \rightarrow p\eta$ and $\Lambda_C^+ \rightarrow p\pi^0$
 - Measurement of $\Lambda_C^+ \rightarrow \Lambda + X$
- Summary

I will briefly go through some high lights of the recent experimental results today. (Will not cover most of the results, which had presented in the previous FPCP meetings.)

Beijing Electron Positron Collider

beam energy: 1.0 – 2.3 GeV

2004: started BEPCII upgrade, BESIII construction 2008: test run 2009 - now: BESIII physics run

LINAC

- 1989-2004 (BEPC):
 - L_{peak}=1.0x10³¹ /cm²s
- 2009-now (BEPCII):
 - L_{peak}=0.85x10³³/cm²s

The BESIII detector

Charm data @BESIII

Tag technique

- Threshold production
 - Only D meson pairs
 - Quantum Correlations (QC)
 - Systematic uncertainties cancellations while applying double tag technique
- D tagging method
 - Single tag (higher eff, larger bg)
 - Double tag (lower eff, smaller bg)

 $D^{-} \qquad D^{0}$ $D^{-} \rightarrow K^{+}\pi^{-}\pi^{-}$ $D^{-} \rightarrow K^{+}\pi^{-}\pi^{-}\pi^{0}$ $D^{-} \rightarrow K^{0}_{S}\pi^{-}$ $D^{-} \rightarrow K^{0}_{S}\pi^{-}\pi^{0}$ $D^{-} \rightarrow K^{0}_{S}\pi^{-}\pi^{+}\pi^{-}$ $D^{-} \rightarrow K^{+}K^{-}\pi^{-}$

~1.5M D+D-, 2.2M D0D0

FPCP17, Prague, Jue5~9 2017

 $D^0 \to K^- \pi^+$

 $K_S^0 \to \pi^+ \pi^-$

 $\pi^0 \to \gamma \gamma$

 $D^0 \rightarrow K^- \pi^+ \pi^0$

 $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$

$$M_{\rm BC} = \sqrt{E_{\rm beam}^2 - |\vec{p}_{\bar{\Lambda}_c}|^2}$$
$$\Delta E = E - E_{\rm beam}$$

$$\begin{array}{c} D_s^- \\ D_s^- \to K_s^0 K^- \\ D_s^- \to K^+ K^- \pi^- \\ D_s^- \to K^+ K^- \pi^- \pi^0 \\ D_s^- \to K_s K^+ \pi^- \pi^- \\ D_s^- \to \pi^+ \pi^- \pi^- \\ D_s^- \to \pi^- \eta \\ D_s^- \to \pi^- \eta' (\eta' \to \pi^+ \pi^- \eta) \\ D_s^- \to \pi^- \eta' (\eta' \to \rho^0 \gamma) \\ D_s^- \to \pi^- \pi^0 \eta \end{array}$$

6

Absolute BR of $D^0 \rightarrow K_s/K_L \pi^0(\pi^0)$

- Interference $D \rightarrow K^0 \pi$'s with (DCS) $D \rightarrow K^0 bar \pi$'s component: $Br(D \rightarrow K_S \pi) \neq Br(D \rightarrow K_L \pi)$
- Measure absolute branching fractions: $D^0 \rightarrow K_S \pi^0$, $D^0 \rightarrow K_S \pi^0 \pi^0$, $D^0 \rightarrow K_L \pi^0$ and $D^0 \rightarrow K_L \pi^0 \pi^0$
- K_L reconstruction

 $BR_{Ks\pi^0}(\%)$

 1.209 ± 0.041

 1.205 ± 0.035

 1.237 ± 0.028

 1.221 ± 0.019

 $BR_{K_{S}2\pi^{0}}(\%)$

 1.028 ± 0.048

 0.873 ± 0.040

 1.004 ± 0.036

 0.965 ± 0.023

 $K\pi$

 $K3\pi$

 $K\pi\pi^0$

All

 $K\pi$

 $K3\pi$

 $K\pi\pi^0$

All

- EMC neutral cluster $\rightarrow K_L$ position
- Fix $\Delta E=0 \rightarrow K_L$ momentum

 $D \to K_S^0 {}_L \pi^0$

 $BR_{K_{I}\pi^{0}}(\%)$

 1.044 ± 0.038

 0.946 ± 0.033

 0.939 ± 0.028

 0.967 ± 0.019

 $BR_{K_L 2\pi^0}(\%)$

 1.257 ± 0.075

 1.002 ± 0.060

 1.156 ± 0.062

 1.123 ± 0.037

 $D \to K^0_{S,L} \pi^0 \pi^0$

BESIII preliminary

FPCP17, Prague, Jue5~9 2017

 $R(D \to K_{S,L}\pi^0)$

 0.0731 ± 0.0245

 0.1207 ± 0.0225

 0.1373 ± 0.0184

 0.1163 ± 0.0123

 $R(D \rightarrow K_{S,L} 2\pi^0)$

 -0.1001 ± 0.0374

 -0.0689 ± 0.0376

 -0.0703 ± 0.0320

 -0.0755 ± 0.0204

y_{cp} measurement from $D^0 \rightarrow K_s/K_t \pi^0$

• Single Tag decay rate (CP tags) $\Gamma_{CP\pm} \gtrsim 2|A_{CP\pm}|^{2}(1 \mp y)$ • Double Tag decay rate (Flavor tags+) $\Gamma_{l;CP\pm} \propto |A_{l}|^{2}|A_{CP\pm}|^{2}$ • Neglect term y² or higher order $y_{CP} \approx \frac{1}{4} \left(\frac{\Gamma_{l;CP+}\Gamma_{CP-}}{\Gamma_{l;CP-}\Gamma_{CP+}} - \frac{\Gamma_{l;CP-}\Gamma_{CP+}}{\Gamma_{l;CP+}\Gamma_{CP-}} \right)$

- BESIII previous measurement(PLB744(2015)339) **
 - Flavor tags: $Kev_{e'} K\mu v_{\mu}$ $y_{CP} = (-2.0 \pm 1.3 \pm 0.7)\%$
 - CP+ tags (3 modes): K⁺K⁻, $\pi^{+}\pi^{-}$, K_S $\pi^{0}\pi^{0}$
 - CP- tags (3 modes): $K_S \pi^0$, $K_S \eta$, $K_S \omega$
- For this analysis
 - CP+ tag: $K_L \pi^0$; CP- tag: $K_S \pi^0$; Flavor tag: Kev_e
 - Double tag yields are from U_{miss} fit
 - y_{CP} = (0.98±2.43)% (Statistical error only)

4 -3 -2 -1 0 1 2 3 4 5

y_{CP} (%)

Belle 2012

BaBar 2012

World average

THIS WORK

 $1.110 \pm 0.220 \pm 0.110$ %

 $0.720 \pm 0.180 \pm 0.124$ %

8

0.866 ± 0.155 %

$D^+ \rightarrow K_S K^+(\pi^0)$ and $D^+ \rightarrow K_L K^+(\pi^0)$

Signal mode	$\mathcal{B}(D^+)(\times 10^{-3})$	$\mathcal{B}(D^-)(\times 10^{-3})$	$\overline{\mathcal{B}}(\times 10^{-3})$	${\cal B}$ (PDG) (×10 ⁻³)	\mathcal{A}_{CP} (%)
$K^0_S K^{\pm}$	$3.01 \pm 0.12 \pm 0.08$	$3.10 \pm 0.12 \pm 0.08$	$3.06 \pm 0.09 \pm 0.08$	2.95 ± 0.15	$-1.5 \pm 2.8 \pm 1.6$
$K^0_S K^{\pm} \pi^0$	$5.23 \pm 0.28 \pm 0.24$	$5.09 \pm 0.29 \pm 0.22$	$5.16 \pm 0.21 \pm 0.23$	-	$1.4\pm4.0\pm2.4$
$K^0_L K^{\pm}$	$3.13 \pm 0.14 \pm 0.10$	$3.32 \pm 0.15 \pm 0.11$	$3.23 \pm 0.11 \pm 0.11$	-	$-3.0 \pm 3.2 \pm 1.2$
$K_L^0 K^{\pm} \pi^0$	$5.17 \pm 0.30 \pm 0.21$	$5.26 \pm 0.30 \pm 0.21$	$5.22 \pm 0.22 \pm 0.21$	-	$\textbf{-0.9} \pm \textbf{4.1} \pm \textbf{1.6}$

• Agree with CLEO-c result

		${\cal B}(D^+ o K^0_S K^+)$	Phys.
2222 2222 2222 2222	CLEO	$(3.14 \pm 0.09 \pm 0.08) \times 10^{-3}$	Single

Phys. Rev. D77, 091106(R) (2008) Single tag method

• Br of $D^+ \rightarrow K_S K^+ \pi^0$, $D^+ \rightarrow K_L K^+$ and $D^+ \rightarrow K_L K^+ \pi^0$ are measured for the first time

No evidence for CP asymmetry in the 4 SCS decays

D⁰⁽⁺⁾→PP (P=pseudoscalar)

Single tag method: $\mathcal{B}(D^{+(0)} \to P_1 P_2) = \frac{N_{\text{net}}}{2 \times N_{D^+ D^- (D^0 \overline{D}^0)}^{\text{tot}} \times \varepsilon(\times \mathcal{B}_i)}$

 BR results consistent with other measurement and have similar precisions with the existing best measurements

Mode	$\mathcal{B}_{\mathbf{This \ work}} \ (imes 10^{-3})$	$\mathcal{B}_{PDG} (\times 10^{-3})$
$D^+ \to \pi^+ \pi^0$	$1.259 \pm 0.033 \pm 0.025$	1.24 ± 0.06
$D^+ \to K^+ \pi^0$	$0.231 \pm 0.021 \pm 0.006$	0.189 ± 0.025
$D^+ o \pi^+ \eta$	$3.790 \pm 0.070 \pm 0.076$	3.66 ± 0.22
$D^+ \to K^+ \eta$	$0.151 \pm 0.025 \pm 0.014$	0.112 ± 0.018
$D^+ o \pi^+ \eta'$	$5.12 \pm 0.14 \pm 0.21$	4.84 ± 0.31
$D^+ \to K^+ \eta'$	$0.164 \pm 0.051 \pm 0.025$	0.183 ± 0.023
$D^+ \to K^0_S \pi^+$	$15.91 \pm 0.06 \pm 0.33$	15.3 ± 0.6
$D^+ \to K^0_S K^+$	$3.183 \pm 0.029 \pm 0.067$	2.95 ± 0.15
$D^0 \rightarrow \pi^+\pi^-$	$1.508 \pm 0.018 \pm 0.027$	1.421 ± 0.025
$D^0 ightarrow K^+ K^-$	$4.233 \pm 0.021 \pm 0.076$	4.01 ± 0.07
$D^0 ightarrow K^{\mp} \pi^{\pm}$	$38.98 \pm 0.06 \pm 0.62$	39.4 ± 0.4
$D^0 ightarrow K^0_S \pi^0$	$12.39 \pm 0.06 \pm 0.30$	12.0 ± 0.4
$D^0 ightarrow K_S^{\widetilde{0}} \eta$	$5.13 \pm 0.07 \pm 0.12$	4.85 ± 0.30
$D^0 ightarrow K^0_S \eta'$	$9.49 \pm 0.20 \ \pm 0.37$	9.5 ± 0.5

BF measurements of $D^{0(+)} \rightarrow 2K_c + X$

Events /(1 MeV/c²)

- Comprehensive or improved measurements of 3-body decays benefit the understanding of the interplay between weak and strong interactions in multi-body decays, where theory is poor than 2-body decays
- BF of $D^{\circ} \rightarrow K_{S}K_{S}$ will be helpful to explore the SU(3) symmetry breaking in D decays
- Subtract the peaking background by sideband

$$N_{\text{net}} = N_{K_S^0 \text{sig}} - \frac{1}{2}N_{\text{sb1}} + \frac{1}{4}N_{\text{sb2}} - N_{\text{other}}^{\text{b}}$$
$$N_{\text{net}} = N_{K_S^0 \text{sig}} - \frac{1}{2}N_{\text{sb1}} + \frac{1}{4}N_{\text{sb2}} - \frac{1}{8}N_{\text{sb3}} - N_{\text{other}}^{\text{b}}$$

$$\mathcal{B}(D^{+(0)} \to f) = \frac{N_{\text{net}}}{2 \cdot \sigma_{D^+D^- \ (D^0\bar{D}^0)} \cdot \mathcal{L} \cdot \epsilon}$$

PLB765,231(2017)

BRs of $\Lambda_{c}^{+} \rightarrow \Sigma^{-} \pi^{+} \pi^{+}$ and $\Lambda_{c}^{+} \rightarrow \Sigma^{-} \pi^{+} \pi^{+} \pi^{0}$

- The total measured $\Lambda_{\rm C}^+$ decays BR < 65%
- PDG2017: B($\Lambda_C^+ \rightarrow \Sigma^- \pi^+ \pi^+$) = (2.1 ± 0.4)%(Large error)
- Preliminary results(statistical errors only):
 - $B(\Lambda_C^{+} \Sigma^{-} \pi^{+} \pi^{+}) = (1.81 \pm 0.17 \pm 0.09)\%$
 - $B(\Lambda_C^{+2}\Sigma^{-}\pi^{+}\pi^{+}\pi^{0}) = (2.11 \pm 0.33 \pm 0.14)\%$ (First observation)
- Consistent with PDG17 with better precision.

SCS decay of $\Lambda_{c}^{+} \rightarrow p\pi^{+}\pi^{-}/K^{+}K^{-}$

- PRL117,232002(2016)
 Study of SCS -Singly Cabibbo Suppressed decays can shed light on dynamics of Λ_c⁺ decays
- $B(\Lambda_c^+ \rightarrow p\phi)$ is particular interest since it proceeds W-exchange only.

Green histogram: peaking background from $\Lambda_C^+ \rightarrow pK_S$ and $\Lambda_C^+ \rightarrow \Lambda \pi^+$

Two-dimensional unbinned maximum likelihood fit

FPCP17, Prague, Jue5~9 2017

SCS decay of $\Lambda_{c}^{+} \rightarrow p\pi^{+}\pi^{-}/K^{+}K^{-}$

- ST study, relative BFs to $\Lambda_c^+ \rightarrow pK^-\pi^+$ measured.
- Input BESIII measurement:

 $B[\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}] = (5.84 \pm 0.27 \pm 0.23)\%$

_	$\mathcal{B}_{ ext{mode}}$	$\mathcal{B}(\mathrm{PDG})$	
$\Lambda_c^+ \to p \pi^+ \pi^-$	$(3.91 \pm 0.28 \pm 0.15 \pm 0.24) \times 10^{-3}$ (1.06 ± 0.10 ± 0.08 ± 0.06) × 10^{-3}	$(3.5 \pm 2.0) \times 10^{-3}$	first observation
$\Lambda_c^+ \to p\phi$ $\Lambda_c^+ \to pK^+K^-$ (non	$(1.00 \pm 0.19 \pm 0.08 \pm 0.06) \times 10^{-4}$ $(5.47 \pm 1.30 \pm 0.41 \pm 0.33) \times 10^{-4}$	$(8.2 \pm 2.7) \times 10^{-4}$ $(3.5 \pm 1.7) \times 10^{-4}$	improved precision

Uncertainties are statistical, systematic and reference mode uncertainty

- The result in this work:
 - investigate the dynamic of Λ_{C}^{+} decays
 - distinguish the predictions from different theoretical models
 - Understand the contributions from the non-factorizable diagrams

SCS decay of $\Lambda_c^+ \rightarrow p\pi^0/pn$ **Submit to PRL, arXiv:1702.05279** • $B(\Lambda_c^+ \rightarrow p\pi^0)$ in the SU(3) flavor symmetry generated by u,d and s.

• Their relative size is essential to understand the interference of different non-factorizable diagrams

- Simultaneous fit:
 - η→γγ
 - $\eta \rightarrow \pi^+ \pi^- \pi^0$

 $\mathcal{B}(\Lambda_c^+ \to p\eta) = (1.24 \pm 0.28 \pm 0.1) \times 10^{-3}$ First evidence for $\Lambda_c^+ \to p\eta$ with 4.2 σ significance

• $\Lambda_c^+ \rightarrow p \pi^0$: no obvious signal

Fit to the M_{BC} distribution

Signal: MC shape ⊗ Gaussian Background: Argus function

Upper limit: $\mathcal{B}(\Lambda_c^+ \to p\pi^0) < 2.7 \times 10^{-4}$ Compared with $\mathcal{B}(\Lambda_c^+ \to p\eta)$: $\mathcal{B}(\Lambda_c^+ \to p\pi^0)/\mathcal{B}(\Lambda_c^+ \to p\eta) < 0.24$

The measurement of $\Lambda_c \rightarrow \Lambda + X$

- The measurement is useful to test Heavy Quark Effect Theory(HQET)
- PDG2016: B($\Lambda_c \rightarrow \Lambda + X$) = 35 ± 11%

Tagging mode i	$\Delta E (\text{GeV})$	$M_{\rm BC} (GeV/C)$	IV_i -
$\overline{\bar{\Lambda}_c^-} \to \overline{p} K_S^0$ $\overline{\bar{\Lambda}_c^-} \to \overline{p} K^+ \pi^-$	$\begin{matrix} [-0.021, 0.019] \\ [-0.020, 0.015] \end{matrix}$	[2.282, 2.300]	$\begin{array}{c} 1220\pm37\\ 6088\pm85 \end{array}$

 $B(\Lambda_C \rightarrow \Lambda + X) = (38.2^{+2.8}, \pm 0.6)\%$

Summary

- BESIII released many new Charm results!
- Charm hadronic decays
 - Study DDbar mixing
 - The large $\psi(3770)$ sample of BESIII allows to make measurements with improved precisions
- Charmed baryon
 - Precision measurements in Λ_c decays
 - Fill the unknown charts in the PDG
- In future
 - BESIII has collected 3.16fb⁻¹ Ds data around Ecm=4.180GeV, expect new results on Ds decays in the near future
 - More Λ_c data taking proposed at BESIII→push the precisions to the level as we have in D/Ds
 Thank you!

backup

SCS decay of $\Lambda_c^+ \rightarrow p \pi^+ \pi^- / K^+ K^-$

Figure 1: Feynman diagrams, (a) internal W-emission for $\Lambda_c^+ \to p\pi^+\pi^-$, (b) external W-emission for $\Lambda_c^+ \to p\pi^+\pi^-$, (c) internal W-emission for $\Lambda_c^+ \to pK^+K^-$

Figure 2: Feynman diagrams with W-exchange, (a) $\Lambda_c^+ \to p \pi^+ \pi^-$ (b) $\Lambda_c^+ \to p K^+ K^-$

SCS decay of $A_c^+ \rightarrow p\pi^0/p\eta$

Singly Cabibbo-suppressed modes: $\Lambda_c^+ \rightarrow p\pi^0$, $p\eta$

From Prof. Hai-Yang Cheng's report.

- More precise comparison of the two BFs are desired to explore the interference of different non-factorizable diagrams
- BESIII Preliminary result support the theoretic prediction.