CHARM SEMILEPTONIC PHYSICS AT BESIII

YI FANG On behalf of the BESIII Collaboration

The 15th meeting in the conference series of Flavor Physics & CP Violation, June 5-9, 2017, Prague, Czech

Outline

Introduction

- 2 Semileptonic D Decays
- ③ Semileptonic D_s Decays
- 4 Semileptonic Λ_c Decays

Yi FANG (IHEP)

Introduction

Charm semileptonic decays provide a window to study week and strong interactions.

• Consider the semileptonic decay where the *D* meson decays to a pseudoscalar meson, a lepton and its neutrino via a virtual *W* boson

$$rac{d\Gamma(D o Pe
u)}{dq^2} = rac{G_{F}^2 |V_{cs(d)}|^2}{24\pi^3} p^3 |f_+(q^2)|^2$$

- Measure hadronic form factors $f_+^{D \to K}(0), f_+^{D \to \pi}(0), \cdots$
 - To verify lattice QCD
 - Verified lattice QCD helps extract the CKM matrix elements |V_{td}| and |V_{ts}| from B-B oscillations

• Extract the CKM matrix elements $|V_{cs}|$ and $|V_{cd}|$

• To test the unitarity of the CKM matrix

YI FANG (IHEP)

BESIII Experiment

• BEPCII COLLIDER

symmetric $\Theta^+ \Theta^-$ collider, double-rings, 2.0 GeV $< \sqrt{s} < 4.6$ GeV

BESIII DETECTOR

• DATA SETS

- D and D⁺ Physics: 2.93 fb⁻¹ at $\sqrt{s} = 3.773$ GeV
- 2 D_s Physics: 482 pb⁻¹ at $\sqrt{s} = 4.009$ GeV
- One Physics: 567 pb⁻¹ at $\sqrt{s} = 4.599$ GeV

Analysis Technique

 $e^+e^- o c ar c o ar D_{tag}$ D_{sig} : Double-tag technique, Absolute measurement

• Tag \overline{D}_{tag} in hadronic decay modes

$$\Delta E = E_{\bar{D}_{\rm tag}} - E_{\rm beam}$$

$$M_{
m BC} = \sqrt{E_{
m beam}^2 -
ho_{ar{D}_{
m tag}}^2}$$

• Reconstruct D_{sig} using the remaining tracks not associated to \overline{D}_{tag}

•
$$E_{D_{\text{sig}}} = E_{\text{beam}}, \ \vec{p}_{D_{\text{sig}}} = -\vec{p}_{\bar{D}_{\text{tag}}}$$

- no additional tracks/showers
- (semi-)leptonic decay: missing neutrino, $U_{\rm miss}\equiv E_{\rm miss}-|ec{p}_{\rm miss}|\sim 0$

$$\begin{split} N_{\mathrm{tag}} &= 2 N_{D\bar{D}} \mathcal{B}_{\mathrm{tag}} \varepsilon_{\mathrm{tag}} \\ N_{\mathrm{tag,SL}} &= 2 N_{D\bar{D}} \mathcal{B}_{\mathrm{tag}} \mathcal{B}_{\mathrm{SL}} \varepsilon_{\mathrm{tag,SL}} \\ \mathcal{B}_{\mathrm{SL}} &= \frac{N_{\mathrm{tag,SL}}}{N_{\mathrm{tag}}} \frac{\varepsilon_{\mathrm{tag}}}{\varepsilon_{\mathrm{tag,SL}}} = \frac{N_{\mathrm{tag,SL}}}{N_{\mathrm{tag}}\varepsilon} \end{split}$$

- High tagging efficiency
- Extremely clean
- Systematic uncertainties associated to tag side are mostly canceled out

Yi FANG (IHEP)

CHARM SEMILEPTONIC PHYSICS AT BESIII

Semileptonic D Decays

Yi FANG (IHEP)

CHARM SEMILEPTONIC PHYSICS AT BESIII

FPCP 2017 6 / 22

< ロ > < 同 > < 回 > < 回

$D^0 \rightarrow K^- e^+ \nu_e$, $\pi^- e^+ \nu_e$

Phys. Rev. D 92, 072012 (2015)

YI FANG (IHEP)

 $D^+ \rightarrow \bar{K}^0 e^+ \nu_e$, $\pi^0 e^+ \bar{\nu}_e$

arXiv:1703.09084 (hep-ex)

FPCP 2017

Fits to Partial Decay Rates

Measure partial decay rates in q^2 bins:

Yi FANG (IHEP)

CHARM SEMILEPTONIC PHYSICS AT BESIII

FPCP 2017 9 / 22

Fits to Partial Decay Rates

• Results of form factor fits for $D \rightarrow Pe^+\nu_e$ ($P = K^-, \pi^-, \bar{K}^0, \pi^0$)

Single pole model			
Decay mode	$f_{+}(0) V_{cs(d)} $	$M_{\rm pole}~({\rm GeV}/c^2)$	
$D^0 \rightarrow K^- e^+ \nu_e$	$0.7209 \pm 0.0022 \pm 0.0035$	$1.921 \pm 0.010 \pm 0.007$	
$D^0 ightarrow \pi^- e^+ \nu_e$	$0.1475 \pm 0.0014 \pm 0.0005$	$1.911 \pm 0.012 \pm 0.004$	
$D^+ ightarrow ar{K}^0 e^+ u_e$	$0.7094 \pm 0.0035 \pm 0.0111$	$1.935 \pm 0.017 \pm 0.006$	
$D^+ \rightarrow \pi^0 e^+ \nu_e$	$0.1429 \pm 0.0020 \pm 0.0009$	$1.898 \pm 0.020 \pm 0.003$	
Modified pole model			
Decay mode	$f_{+}(0) V_{cs(d)} $	α	
$D^0 ightarrow K^- e^+ u_e$	$0.7163 \pm 0.0024 \pm 0.0034$	$0.309 \pm 0.020 \pm 0.013$	
$D^0 \rightarrow \pi^- e^+ \nu_e$	$0.1437 \pm 0.0017 \pm 0.0008$	$0.279 \pm 0.035 \pm 0.011$	
$D^+ \rightarrow \bar{K}^0 e^+ \nu_e$	$0.7052 \pm 0.0038 \pm 0.0112$	$0.294 \pm 0.031 \pm 0.010$	
$D^+ \rightarrow \pi^0 e^+ \nu_e$	$0.1400 \pm 0.0024 \pm 0.0010$	$0.285 \pm 0.057 \pm 0.010$	
Two-parameter series expansion			
Decay mode	$f_{+}(0) V_{cs(d)} $	<i>r</i> ₁	
$D^0 \rightarrow K^- e^+ \nu_e$	$0.7172 \pm 0.0025 \pm 0.0035$	$-2.2286 \pm 0.0864 \pm 0.0573$	
$D^0 \rightarrow \pi^- e^+ \nu_e$	$0.1435 \pm 0.0018 \pm 0.0009$	$-2.0365 \pm 0.0807 \pm 0.0257$	
$D^+ ightarrow ar{K}^0 e^+ u_e$	$0.7053 \pm 0.0040 \pm 0.0112$	$-2.18 \pm 0.14 \pm 0.05$	
$D^+ \rightarrow \pi^0 e^+ \nu_e$	$0.1400 \pm 0.0026 \pm 0.0007$	$-2.01\pm 0.13\pm 0.02$	
Three-parameter series expansion			
Decay mode	$f_{+}(0) V_{cs(d)} $	<i>r</i> ₁	<i>r</i> ₂
$D^0 \rightarrow K^- e^+ \nu_e$	$0.7195 \pm 0.0035 \pm 0.0041$	$-2.3338 \pm 0.1587 \pm 0.0804$	$3.4188 \pm 3.9090 \pm 2.4098$
$D^{U} \rightarrow \pi^{-}e^{+}\nu_{e}$	$0.1420 \pm 0.0024 \pm 0.0010$	$-1.8432\pm0.2212\pm0.0690$	$-1.3874 \pm 1.4615 \pm 0.4680$
$D^+ \rightarrow \bar{K}^0 e^+ \nu_e$	$0.6983 \pm 0.0056 \pm 0.0112$	$-1.76 \pm 0.25 \pm 0.06$	$-13.4 \pm 6.3 \pm 1.4$
$D^+ \rightarrow \pi^0 e^+ \nu_e$	$0.1413 \pm 0.0035 \pm 0.0012$	$-2.23 \pm 0.42 \pm 0.06$	$1.4\pm2.5\pm0.4$

Yi FANG (IHEP)

Charm Semileptonic Physics at BESIII

FPCP 2017 10 / 22

<ロ><同><同><同><同><日><日><日</td>

Form Factors $f_{+}^{D \to K(\pi)}(0)$

• To determine $f_+^{D \to K(\pi)}(0)$, use the measurements of $f_+^{D \to K(\pi)}(0)|V_{cs(d)}|$ and the PDG values for $|V_{cs(d)}|$ (assuming CKM unitarity)

- BESIII made the best precise determinations of these two form factors
- The experimental accuracy is better than that of theoretical predictions

< ロ > < 同 > < 回 > < 回 >

Determination of $|V_{cs(d)}|$

• Measurements of the normalization factors $f_{+}^{D \to K(\pi)}(0) |V_{CS(d)}|$

Using the LQCD calculations [Phys. Rev. D 82, 114506 (2010); 84, 114505 (2011)]

 $\begin{array}{ll} f_{+}^{D \to K}(0) = 0.747 \pm 0.019 & \Rightarrow & |V_{cs}| = 0.958 \pm 0.004_{\text{expt}} \pm 0.024_{\text{LQCD}} \\ f_{+}^{D \to \pi}(0) = 0.666 \pm 0.029 & \Rightarrow & |V_{cd}| = 0.214 \pm 0.002_{\text{expt}} \pm 0.009_{\text{LQCD}} \end{array}$

イロト イポト イヨト イヨト

Determination of $|V_{cs(d)}|$

• Unitarity checks

Use $|V_{cs(d)}|$ values extracted from leptonic and semileptonic decays

FPCP 2017 13 / 22

Semileptonic Ds Decays

Yi FANG (IHEP)

CHARM SEMILEPTONIC PHYSICS AT BESIII

FPCP 2017 14 / 22

< ロ > < 同 > < 回 > < 国

• $\mathcal{B}(D_s^+ \to \eta' e^+ \nu_e) / \mathcal{B}(D_s^+ \to \eta e^+ \nu_e) = 0.40 \pm 0.14 \pm 0.02$

FPCP 2017 15 / 22

- Agree to previous measurements within uncertainties
- Help improve upon the D_s^+ semileptonic branching ratio precision
- Provide complementary information to understand η - η' mixing

イロト イポト イヨト イヨト

Semileptonic Λ_c Decays

Yi FANG (IHEP)

CHARM SEMILEPTONIC PHYSICS AT BESIII

FPCP 2017 17 / 22

< ロ > < 同 > < 回 > < 国

$$\label{eq:characteristic} \begin{split} \Lambda_{\mathcal{C}}^+ &\to \Lambda \mathcal{C}^+ \nu_{\mathcal{C}} \\ \text{Phys. Rev. Lett. 115, 221805 (2015)} \end{split}$$

- Theoretical predictions on $\mathcal{B}(\Lambda_c^+ \to \Lambda \ell^+ \nu_\ell)$ vary from 1.4% to 9.2%
- BESIII performed the first absolute measurement of $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)$

• BESIII performed the first absolute measurement of $\mathcal{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu)$

- Test of lepton universality
 - $\Gamma(\Lambda_c^+ \to \Lambda \mu^+ \nu_{\mu}) / \Gamma(\Lambda_c^+ \to \Lambda e^+ \nu_e) = 0.96 \pm 0.16 \pm 0.04,$ compatible with unity
- Our results provide stringent tests on the non-perturbative models.

$\Lambda_{c}^{+}\to\Lambda\ell^{+}\nu_{\ell}$

- The BESIII results provide important input for calibrating the LQCD calculations
- The first LQCD calculation of form factors governing $\Lambda_c^+ \rightarrow \Lambda \ell^+ \nu_\ell$ decays [Phys. Rev. Lett. **118**, 082001 (2017)]

• The first determination of $|V_{cs}|$ based on $\mathcal{B}(\Lambda_c^+ \to \Lambda \ell^+ \nu_\ell)$ measured by BESIII

$$|V_{CS}| = \begin{cases} 0.951(24)_{LQCD}(14)_{\tau_{i_{c}}}(56)_{\mathcal{B}}, & \ell = e \\ 0.947(24)_{LQCD}(14)_{\tau_{i_{c}}}(72)_{\mathcal{B}}, & \ell = \mu \\ 0.949(24)_{LQCD}(14)_{\tau_{i_{c}}}(49)_{\mathcal{B}}, & \ell = e, \mu \end{cases}$$

- With 2.93 fb⁻¹, 482 pb⁻¹ and 567 pb⁻¹ data taken at 3.773 GeV, 4.009 GeV and 4.599 GeV, respectively, BESIII provided many key measurements on heavy flavor physics:
 - Branching fractions and semileptonic form factors;
 - CKM matrix elements $|V_{cs}|$ and $|V_{cd}|$.
- Prospect:
 - In 2016, ~ 3 fb⁻¹ data were collected at 4.18 GeV, many interesting studies of semileptonic D⁺_s decays will be done at the BESIII experiment in the near future.

Thank you!

Yi FANG (IHEP)

CHARM SEMILEPTONIC PHYSICS AT BESIII

(日)