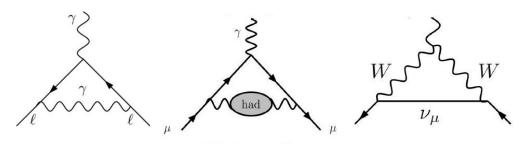
Overview of the $(g-2)_{\mu}$ status and related e⁺e⁻ measurements in Novosibirsk and by ISR

Vladimir Druzhinin

NSU/BINP, Novosibirsk

on behalf of the SND, CMD-3 and BABAR Collaborations

$(g-2)_{\mu}/2$ of muon (experiment)


Magnetic moment

$$\vec{\mu} = g \frac{e\hbar}{2mc} \vec{S}$$

√The Dirac equation predicts g=2 for point-like fermions.

√ Higher order QFT contributions lead to nonzero

$$a=(g-2)/2$$

 \checkmark a_{μ} is sensitive to New Physics contributions

E821@BNL (1997-2001):

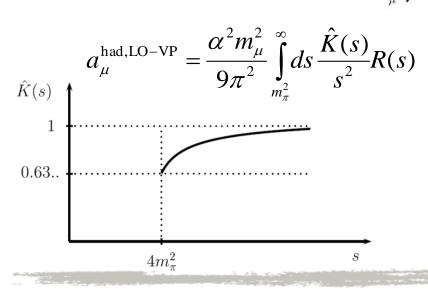
G.W. Bennett *et al.*, Phys. Rev. D **77**, 072003 (2006)

 $a_{\mu} = (11\ 659\ 209.1\pm6.3)\times10^{-10}(0.54\ ppm)$

E989 @ FNAL (2017-...):

F. Gray et al., arXiv: 1510.003

 $a_{\mu} = ... (0.14 \text{ ppm})$


E34 @ J-PARC (????-...): T. Mibe *et al.*, Chin. Phys. C **34** (2010) 745 $\mathbf{a}_{\mu} = \dots (\mathbf{0.1 \ ppm})$

$(g-2)_{\mu}/2$ of muon (theory)

☐ The leading order hadronic contribution is calculated using dispersion relations from experimental data on the total cross section of the e⁺e⁻ annihilation into hadrons

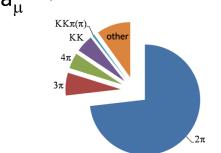
Low energies (E < 2 GeV) give dominant contribution into $a_{\mu}^{had,LO-VP}$ (92%).

$$R(s) = \frac{\sigma(e^+e^- \to \gamma^* \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

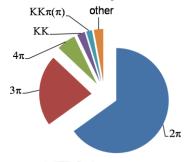
$$a_{\mu} = (g-2)_{\mu}/2$$

DHMZ , TAU 2016, arXiv:1612.02743 Individual SM contributions \times 10⁻¹⁰

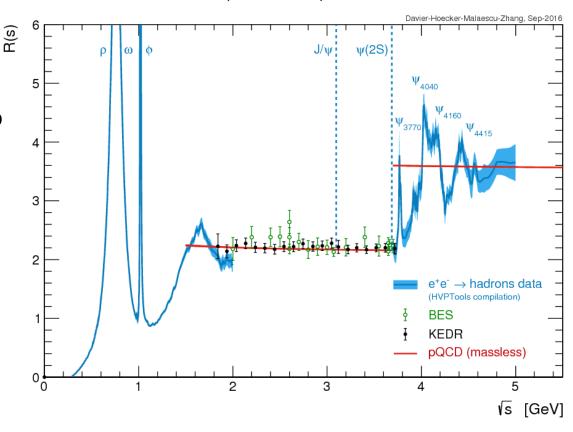
$a_{\mu}^{\;QED}$	11658471.895 ± 0.008
$a_{\mu}^{\ EW}$	15.4 ± 0.1
$a_{\mu}^{\;\;had,LO-VP}$	692.6 ± 3.3
$a_{\mu}^{\;\;had,HO-VP}$	-8.63 ± 0.09
$a_{\mu}^{\;\;had,LbLs}$	10.5 ± 2.6


Comparison with measurement

$a_{\mu}^{\ total\text{-SM}}$	11659181.7 ± 4.2
$a_{\mu}^{~BNL-E821}$	11659209.1 ± 6.3
Data - SM	$27.4 \pm 7.6 (3.6\sigma)$


F.Jegerlehner, arXiv:1705.00263 Data-SM 31.3 ± 7.7 (4.1 σ)

$(g-2)_{\mu}/2$ of muon (theory)


- ☐Below 2 (1.8) GeV the total cross section is calculated as a sum of exclusive channels.
- \Box The contributions of different hadronic channels into $a_{\mu}^{had,LO-VP}$

 \Box and its squared error σ^2

DHMZ, TAU 2016, arXiv:1612.02743

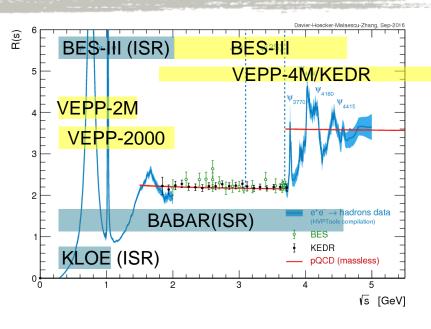
Recently measured cross sections

e⁺e⁻ scan

✓ KEDR@VEPP-4M: Inclusive R

measurement from 1.84 to 3.72 GeV

V.V.Anashin et al. (KEDR Collaboration)


Phys. Lett. B 753, 533 (2016)

arXiv: 1610.02827, accepted in Phys. Lett. B

- ✓ SND@VEPP-2M: $e^+e^- \rightarrow \pi^0 \gamma$,
- ✓ SND@VEPP-2000: $e^+e^- \rightarrow K^+K^-$, $\omega\eta$,

 $\omega \pi^0$, $\omega \pi^0 \eta$, $\pi^0 \gamma$

✓ CMD-3@VEPP-2000: $e^+e^- \rightarrow K^+K^-$, K_SK_L

Initial state radiation (ISR)

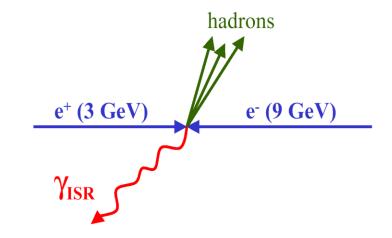
✓ BES-III: $e^+e^- \rightarrow \pi^+\pi^-$

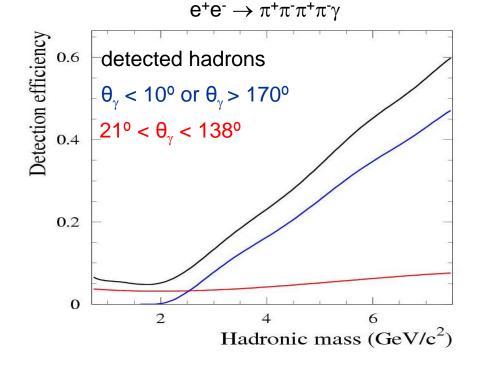
 \checkmark BABAR: e⁺e⁻ → π⁺π⁻π⁰π⁰, π⁺π⁻η, $K_S K_L π$ ⁰, $K_S K_L π$

BABAR Experiment

PEP-II asymmetric e⁺e⁻ collider at SLAC (9 GeV e⁻ and 3.1 GeV e⁺)

Data, about 500 fb⁻¹, were collected in 1999-2008




For ISR analyses, a data sample of 469 fb⁻¹ collected near or at a c.m. energy of 10.58 GeV (at and near Y(4S)) is used.

ISR method@BABAR

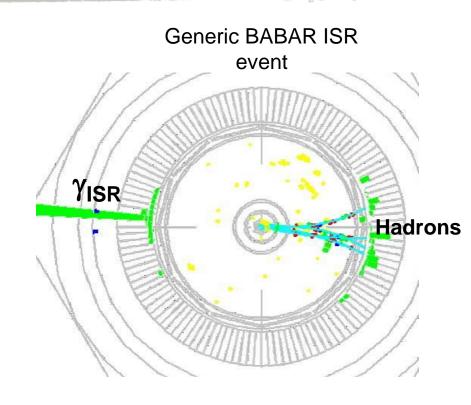
The mass spectrum of the hadronic system in the reaction $e^+e^- \rightarrow f \gamma$ reaction is related to the cross section of the reaction $e^+e^- \rightarrow f$.

$$\frac{d\sigma(s,x)}{dxd(\cos\theta)} = W(s,x,\theta) \cdot \sigma_0(s(1-x)), \quad x = \frac{2E_{\gamma}}{\sqrt{s}}$$

The ISR photon is emitted predominantly along the beam axis. The produced hadronic system is boosted against the ISR photon. Due to limited detector acceptance the mass region below 2 GeV can be studied only with detected photon (about 10% of ISR events).

BABAR tagged ISR analyses

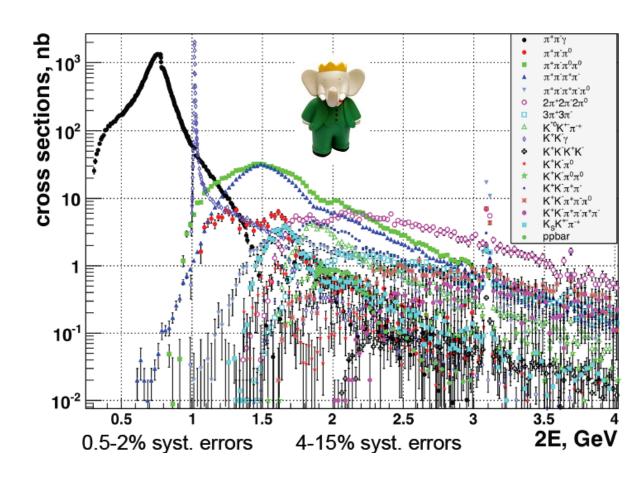
Fully exclusive measurement

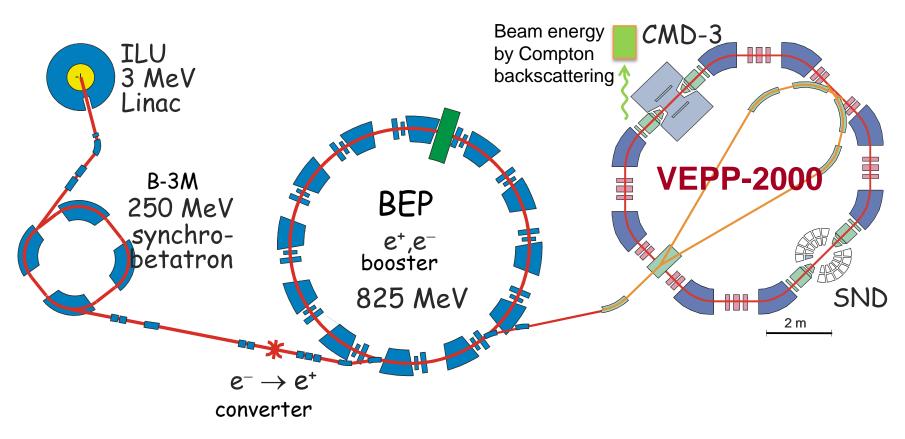

- ✓ Photon with $E_{CM} > 3$ GeV, which is assumed to be the ISR photon
- √ All final hadrons are detected and identified

Large-angle ISR forces the hadronic system into the detector fiducial region

- ✓ A weak dependence of the detection efficiency on dynamics of the hadronic system (angular and momentum distributions in the hadron rest frame) ⇒ smaller model uncertainty
- ✓A weak dependence of the detection efficiency on hadron invariant mass ⇒ measurement near and above threshold with the same selection criteria.

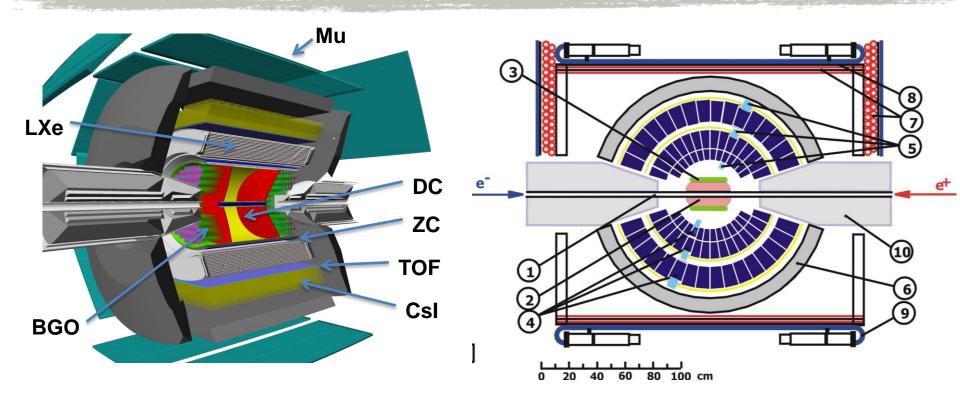
Kinematic fit with requirement of energy and momentum balance


- √ excellent mass resolution
- √ background suppression


Can access a wide range of energy in a single experiment: from threshold to ~5 GeV

BABAR tagged ISR analyses

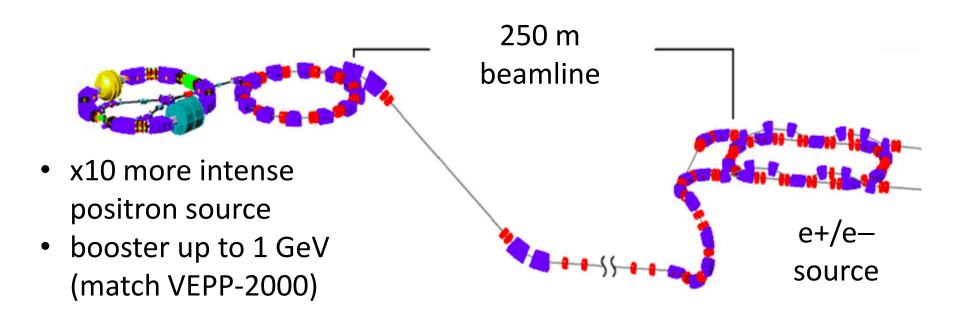
22 final states were studied, 20 papers on low energy ISR studies were published



VEPP-2000 (2010-2013)

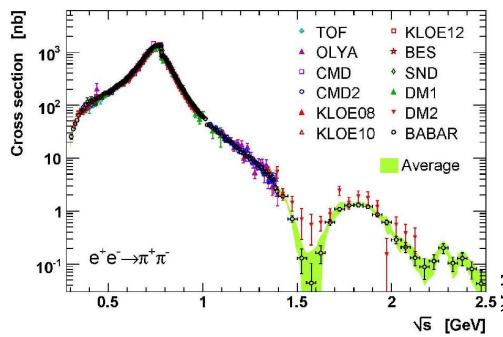
C.m. energy range is E=0.3-2.0 GeV, round beam optics Luminosity at E=1.8 GeV is 2×10^{31} cm⁻² s⁻¹ Two detectors, SND and CMD-3

CMD-3 and SND

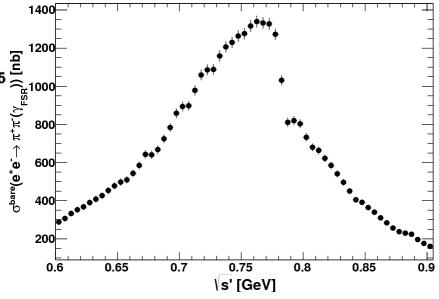


1.3 T magnetic field Tracking: $\sigma_{R\phi} \sim 100~\mu$, $\sigma_{Z} \sim 2~\text{mm}$ Combined EM calorimeter (LXE, Csl, BGO), $\sigma_{E} \sim 3\% - 8\%$

1 – beam pipe, 2 – tracking system, 3 – aerogel Cherenkov counter, 4 – NaI(TI) crystals, 5 – phototriodes, 6 – iron muon absorber, 7–9 – muon detector


In 1996-2000 SND collected data at VEPP-2M

VEPP-2000 (2016-...)

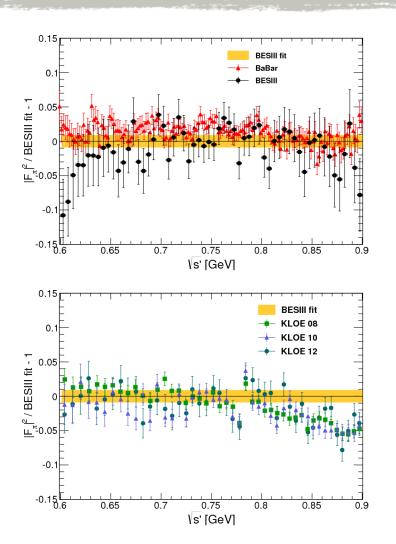

- ■VEPP-2000 upgrade (2013-2016) was finished
- ■Data taking was restarted by the end of 2016
- ■Achieved luminosity at E=1.8 GeV is 4×10^{31} cm⁻² s⁻¹

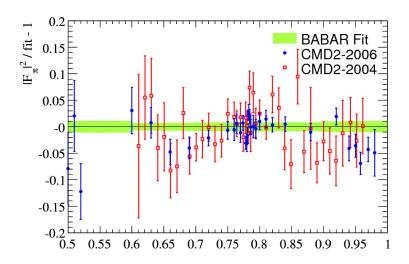
$e^+e^- \rightarrow \pi^+\pi^-$

- Large progress in ISR measurements during the last decade
- ■CMD-2, KLOE, BABAR, BES-III claim systematic uncertainty at a subpercent level

- Most recent measurement was performed by BES III using ISR technique
- Analysis is based on the data set with an integrated luminosity of 2.93 fb⁻¹ taken at 3.773 GeV

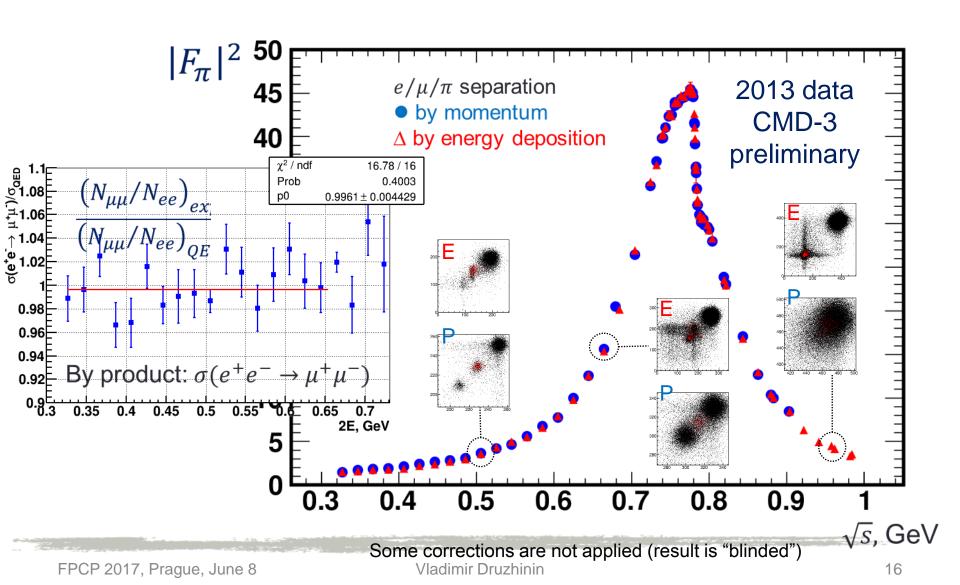
Phys. Lett. B 753, 629 (2016)


$e^+e^- \rightarrow \pi^+\pi^-$

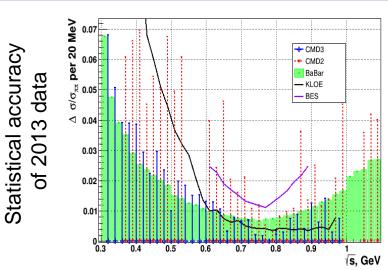

Evolution of the $e^+e^- \to \pi^+\pi^-$ contribution into $a_{\mu}^{had,LO}$ (DHMZ)

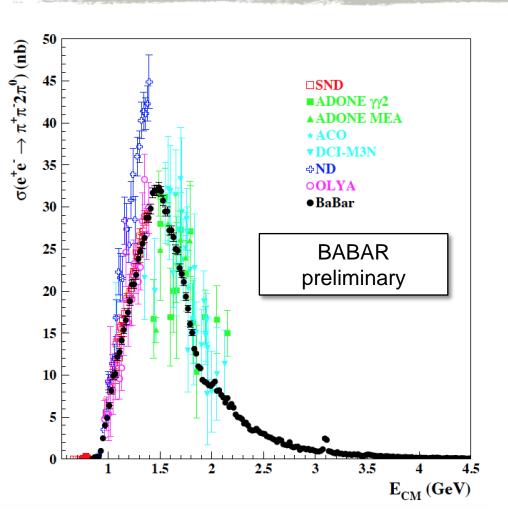
			$\times 10^{-10}$
EPJ C 31,503 (2003)	•	CMD-2 2003 + other e ⁺ e ⁻	508.2 ± 5.9
EPJ C 66,127 (2010) —	—	+ CMD-2 2006 + SND 2006	504.6 ± 4.3
EPJ C 66,127 (2010) —	•—	+ KLOE 2008	503.5 ± 3.5
EPJ C 66,1 (2010)	-	+ BABAR 2009	508.4 ± 2.9
EPJ C 71,1515 (2011)		+ KLOE 2010	507.8 ± 2.8
TAU 2016	-	+ KLOE 2012 + BES III 2016	506.9 ± 2.5
500	510		

The statistical error decreased from 5.2 to 1.1, while the systematic from 2.7 to 2.3.


$e^+e^- \rightarrow \pi^+\pi^-$

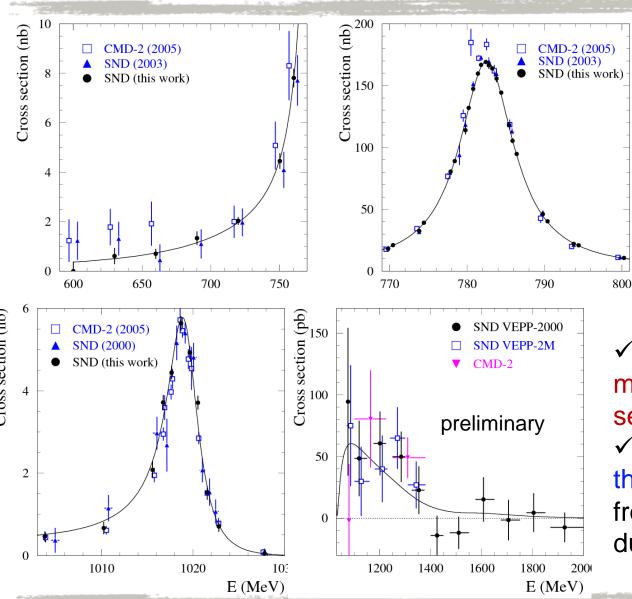
Systematic differences between data from different experiments reach 5% and are significantly larger than the claimed systematic uncertainties (<1%)


$e^+e^- \to \pi^+\pi^- @ CMD-3$


$e^+e^- \rightarrow \pi^+\pi^-$ @ CMD-3

Source	Syst. Now (goal)	Comment
$e/\mu/\pi$ separation	0.5-1.5% (0.2%)	comparison of two methods; correlated to r.c.
fiducial volume	0.3-0.5% (0.1%)	two independent measurements; angular distribution
beam energy	0.1% (0.1%)	continuous monitoring via Compton
radiative corrections	0.2% (0.1%)	working on improving MCGPJ
Detection efficiencies	0.5-1.5% (0.1%)	Mainly at lowest energies due to pion decays; working on studying decay events

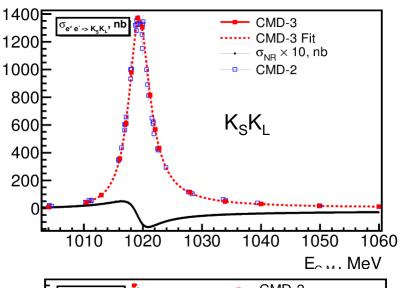
- For most sources of systematics there is clear way how to bring it down
- For 2013 data we aim at sub-% accuracy
- Statistical accuracy matches or better the current world-best

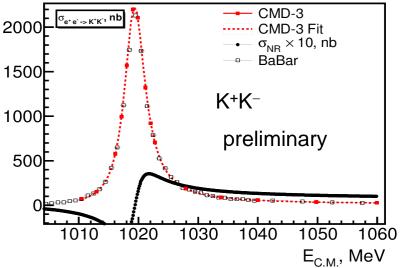

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ @ BABAR

- BABAR results are most precise and covers wider energy range
- Systematic uncertainty is 3.1% in the 1.2-2.7 GeV energy range.
- Contribution to a_μ for the range
 1.02<E_{CM}<1.8 GeV is measured to be [17.5 ± 0.6 (stat+syst)] x 10⁻¹⁰ (3.4% precision)
- Previous result including the preliminary BABAR data from 2007 is [18.0 ± 1.2 (stat+syst)] x 10⁻¹⁰ (6.7% precision)

Phys. Rev. D 93, 092001 (2016)

$e^+e^- \rightarrow \pi^0 \gamma @ SND$

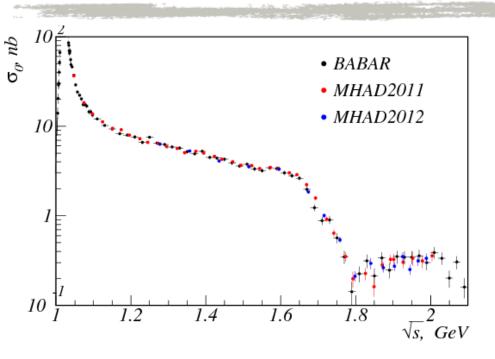



- CMD-2 (2005)

 SND (2003)

 SND (this work)
- ✓ The most precise measurement of the cross section
- ✓ Systematic uncertainty at the ω peak is 1.4% (1.2% from luminosity and 0.6% due to selection criteria)

$e^+e^- \rightarrow K^+K^-$ and K_sK_L @ CMD-3


E.A Kozyrev et al., Phys. Lett. B 760 (2016) 314

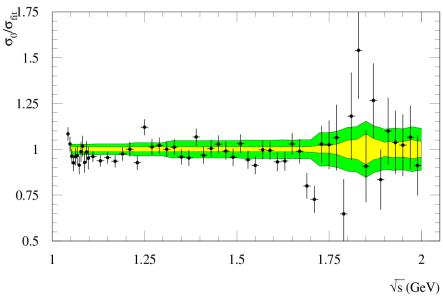
$$\Gamma(\phi \rightarrow e^+e^-)B(\phi \rightarrow K_SK_L) = 428 \pm 9 \text{ eV}$$

PDG2016 430 ± 6 eV

$$\frac{g_{\phi K^+K^-}}{g_{\phi K_S K_L}} \frac{1}{Z(m_{\phi})} = 0.990 \pm 0.017$$
BABAR 0.972 ± 0.017

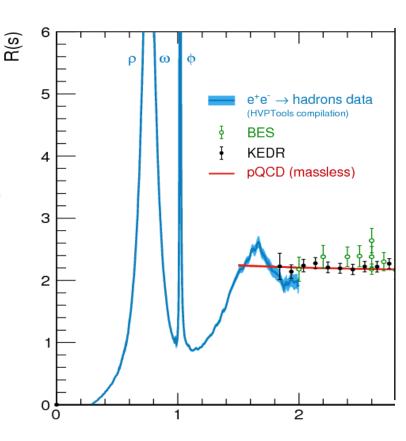
$$\Gamma(\phi \to e^+e^-)B(\phi \to K^+K^-) = 671 \pm 20 \text{ eV}$$

PDG2014 (CMD-2) $608 \pm 14 \text{ eV}$
BABAR $634 \pm 8 \text{ eV}$

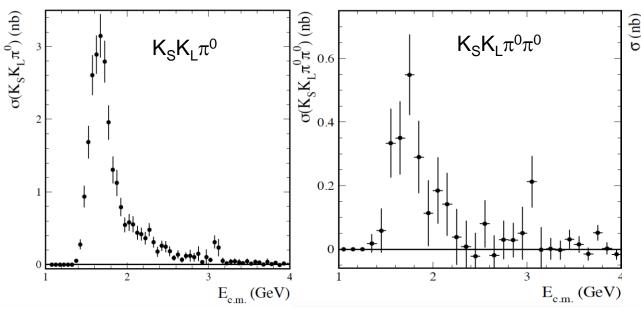

e+e-→K+K- @ SND

The SND measurement agrees with the BABAR data and has comparable or better accuracy.

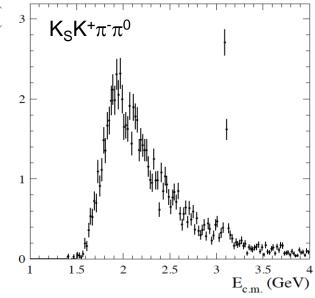
Phys. Rev. D 94, 112006 (2016)


(BABAR data)/(SND fit) ratio

The green and yellow bands represent the BABAR and SND systematic uncertainties

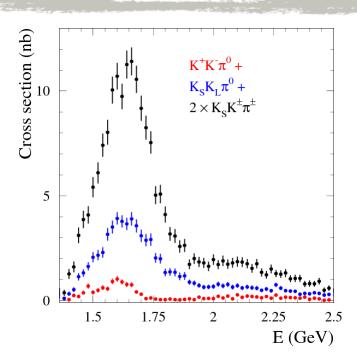

Energy region near 2 GeV

- ☐ At E < 2 GeV the total cross section is calculated as a sum of exclusive channels.
- ☐ The exclusive data are incomplete in the region 1.6<E<2.0 GeV.
- There is no experimental information on the final states $\pi^+\pi^-\pi^0\eta$, $\pi^+\pi^-\eta\eta$, $\pi^+\pi^-\pi^0\pi^0\eta$...)
- ☐ The important experimental task is to measure all significant exclusive channels below 2 GeV, and perform comparison with inclusive measurements and pQCD prediction.
- ☐ New inclusive data below 2 GeV may be obtained by SND and CMD-3



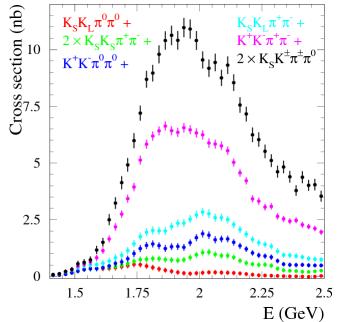
$e^+e^- \rightarrow K_S K_L \pi^0$, $K_S K_L \pi^0 \pi^0$, $K_S K^+ \pi^- \pi^0$ @ BABAR

Phys. Rev. D 95, 052001 (2017)



- First measurement
- ✓ Systematic uncertainty is 10% near the peak, grows to 30% at 3.0 GeV
- ✓ Dominant K*(892)K intermediate state

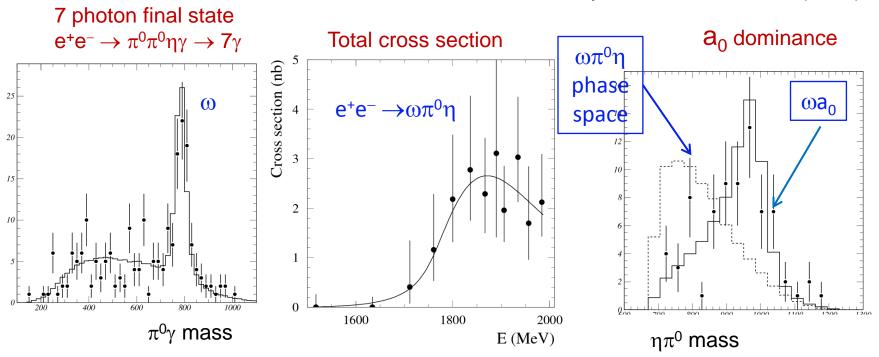
- First measurement
- Systematic uncertainty is 25% at the peak, grows to 60% at 2 GeV
- Dominant K*(892)K π intermediate state.


- First measurement
- Systematic uncertainty is 6-7% below 3 GeV
- Dominant K*(892) $\overline{K}\pi$, $K_sK^+\rho^-$ (770) intermediate state.

Total $e^+e^- \rightarrow KK\pi$ and $KK\pi\pi$ cross sections

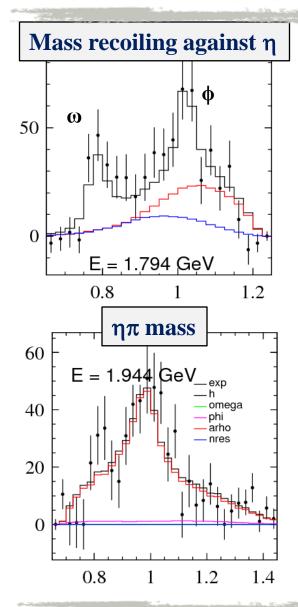
✓The e⁺e⁻ → K_SK⁺π⁻ and K⁺K⁻π⁰ cross sections were measured previously.

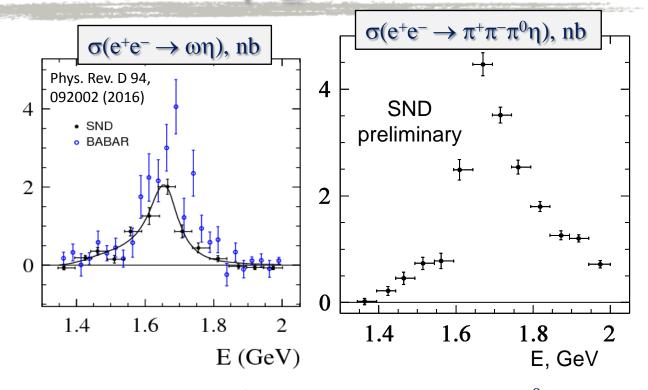
✓ The e⁺e⁻ → K $\overline{K}\pi$ cross section is about 12% of the total hadronic cross section at 1.65 GeV.


There are six charge combinations in the $e^+e^- \to KK\pi\pi$ process . Four $(e^+e^- \to K^+K^-\pi^0\pi^0, K^+K^-\pi^+\pi^-, K_SK_S\pi^+\pi^-, K_SK_L\pi^+\pi^-)$ were measured previously.

✓ The e⁺e⁻ → $KK\pi\pi$ cross section is calculated without any model assumptions. ✓ It is about 25% of the total hadronic cross

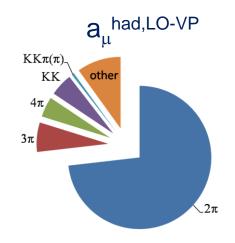
section at 2 GeV.

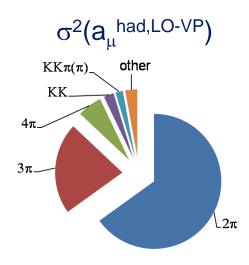

$e^+e^- \rightarrow \omega \pi^0 \eta$ @ SND


Phys. Rev. D 94,032010 (2016)

- First measurement of the $e^+e^- \rightarrow \omega \pi^0 \eta$ cross section.
- The dominant mechanism is $\omega a_0(980)$.
- ■The cross section is about 2.5 nb, 5% of the total hadronic cross section

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$ @ SND





- **x** First measurement of the process $e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$
- **x** The intermediate states are $\omega \eta$, $\phi \eta$, $\alpha_0 \rho$ and structureless $\pi^+ \pi^- \pi^0 \eta$
- **x** The known $\omega\eta$ and $\phi\eta$ contributions explain about 50-60% of the cross section below 1.8 GeV.
- **★** Above 1.8 GeV the dominant reaction mechanism is a₀p

Summary

- ✓ Precise low-energy e⁺e⁻ hadronic cross section data are needed to obtain an accurate SM prediction for a_u had,LO-VP
- Recent results on the e⁺e⁻ $\rightarrow \pi^{+}\pi^{-}$, $\pi^{+}\pi^{-}\pi^{0}\pi^{0}$, KK, KK π , KK $\pi\pi$ cross sections from BES III, BABAR, SND, CMD-3 and R measurement from KEDR reduce the uncertainty on $a_{\mu}^{had,LO-VP}$
- Several previously unmeasured processes contributed to the total hadronic cross section (e⁺e⁻ \rightarrow K_SK_L π^0 , K_SK_L $\pi^0\pi^0$, K_SK⁺ $\pi^-\pi^0$, $\omega\pi^0\eta$, $\pi^+\pi^-\pi^0\eta$) below 2 GeV have been studied
- ✓ New results are expected from BES III, BABAR, SND, CMD-3

