FPCP 2017

June 5 – 9, Prague Czech Republic

15th Conference on Flavor Physics and CP Violation

Radiative and EW Penguin B Decays at Belle

Akimasa Ishikawa

(Tohoku University)

Contents

- New Measurements of B \rightarrow K* γ
 - About nine times larger statistics than previous analysis

- Lepton Flavor Dependent Angular Analysis of B→K*I+I-
- Search for $B \rightarrow h^{(*)}vv$ with semileptonic tagging

All the analyses used a full data sample of 711fb⁻¹ containing 772x10⁶ BB events

Wilson Coefficients in b→s processes

- In the SM, b→s transition can be written by real Wilson coefficients which correspond to short distance couplings in effective Hamiltoniam approach
 - b \rightarrow s γ : C₇
 - b \rightarrow sII: C₇, C₉ and C₁₀
 - $C_7 \sim -0.3$, $C_9 \sim 4$, $C_{10} \sim -4$
- If NP contributes,
 - Deviation from the SM values
 - Lepton flavor dependent C_{9e}≠C_{9μ}
 - New coefficients appear
 - Imaginary parts Im(C_i)
 - Chirality flipped coefficients (C_i')
 - $\quad \mathsf{P}_{\mathsf{L}(\mathsf{R})} \to \mathsf{P}_{\mathsf{R}(\mathsf{L})}$
 - Scalar and Tensor coefficients (C_S, C_P, C_T and C_{TS})

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) O_i(\mu)$$

$$\mathcal{O}_7 = \frac{e}{16\pi^2} m_b (\bar{s}\sigma^{\mu\nu} P_R b) F_{\mu\nu},$$

$$\mathcal{O}_9 = \frac{e^2}{16\pi^2} (\bar{s}\gamma^{\mu} P_L b) (\bar{\ell}\gamma_{\mu}\ell),$$

$$\mathcal{O}_{10} = \frac{e^2}{16\pi^2} (\bar{s}\gamma^{\mu}P_L b)(\bar{\ell}\gamma_{\mu}\gamma_5 \ell)$$

New Measurements of B \rightarrow K* γ

$B \rightarrow K^* \gamma$

- The decay
 - Dominated by one loop penguin diagrams (FCNC)

- Sensitive to NP in the loop
- Relatively small contributions from weak annihilation diagrams
 - Some sensitivity to NP in the tree
- Cleanest exclusive $b \rightarrow s \gamma$ decay.
 - BF $\sim 4 \times 10^{-5}$
 - About 12% of inclusive B→Xsγ rate
 - Prediction of branching fraction is limited by a tensor form factor at $q^2=0$; $T_1(0)$.
 - The exclusive BF is not so sensitive to new physics but is a probe for $T_1(0)$ or QCD.
 - Precise measurements of BF(B \rightarrow X_s γ) constrain new physics in $|C_7|$ so much.

Ratios with B \rightarrow K* γ

- By taking a ratio of decay widths (or BF), a dominant uncertainty due to $T_1(0)$ cancels out (partially) thus sensitive to new physics
 - Ratio of B(B \rightarrow K* γ)/B(Bs \rightarrow $\phi\gamma$)
 - New Physics in annihilation diagrams
 - $T_1^{B \to K^*}(0)/T_1^{Bs \to \phi}(0)$
 - Isospin Violation; Δ_{0+}
 - New physics in annihilation diagrams
 - CP Violation; A_{CP}
 - New phases
 - Sensitive to Im(C₇)
 - Insensitive to chirality flipped operator C₇'
 - Difference of A_{CP} between B^+ and B^0 ; ΔA_{CP}
 - Prediction for inclusive b \rightarrow s γ : sensitive to Im(C₈/C₇)
 - but not for exclusive decays yet $\Delta A_{CP} = A_{CP}(B^+ \to K^{*+}\gamma) A_{CP}(B^0 \to K^{*0}\gamma)$

$$\Delta_{0+} = \frac{\Gamma(B^0 \to K^{*0}\gamma) - \Gamma(B^+ \to K^{*+}\gamma)}{\Gamma(B^0 \to K^{*0}\gamma) + \Gamma(B^+ \to K^{*+}\gamma)}$$

$$A_{CP} = \frac{\Gamma(\bar{B} \to \bar{K}^* \gamma) - \Gamma(B \to K^* \gamma)}{\Gamma(\bar{B} \to \bar{K}^* \gamma) + \Gamma(B \to K^* \gamma)}$$

Altmannshofer, Straub EPJC 75, 82 (2015) Paul, Straub 1608.02556

Reconstruction of B \rightarrow K* γ

Four subdecay modes

- $K^{*0} \rightarrow K_s^0 \pi^0$, $K^+ \pi^-$
- K*+→K+ π^0 , K_s⁰ π -
- Flavor eigenstates except for $K_s^0 \pi^0$
 - Self-flavor tagged modes

B selection

- -0.2 GeV < Δ E < 0.1 GeV
- 5.20 GeV < Mbc < 5.29 GeV
- M_{K π} < 2.0GeV : to check feed down from higher resonances

Background suppression

- BB : π^0/η veto with M_{γγ}
- Continuum : NeuroBays with event shape variables
 - To maximize the FoM

Best candidate selection

- Number of candidates per event is 1.16 with MC.
- Randomly selected in order not to bias other variables

 $- |M_{\kappa\pi} - M_{\kappa*}| < 75 MeV$

Signal
Continuum $B \rightarrow Xs\gamma$ Rare B other than $B \rightarrow Xs\gamma$

Extraction of BF, A_{CP} , Δ_{0+} and ΔA_{CP}

- Unbinned maximum likelihood fit to M_{bc} distributions.
 - Signal w/o π^0 (w/ π^0) : Gaussian (Crystal Ball)
 - Cross-feed: ARGUS + Bifurcated Gaussian (the yield is proportional to signal yield)
 - Continuum background : ARGUS
 - BB background : ARGUS + Bifurcated Gaussian
- To extract the BF and A_{CP} for each subdecay, separate fit is performed.
- To measure the combined BFs, Δ_{0+} , A_{CP} , and ΔA_{CP} , simultaneous fit is performed to seven M_{bc} distributions with the likelihood.
 - With input pa<u>rameters</u> of efficiencies, number of BB pairs, lifetime ratio and production of B+B- and B0B0 in Y(4S) decays

$$\mathcal{L}(M_{\mathrm{bc}}|\mathcal{B}^{N},\mathcal{B}^{C},A_{CP}^{N},A_{CP}^{C})$$

$$= \Pi \mathcal{L}^{K_{S}^{0}\pi^{0}}(M_{\mathrm{bc}}|\mathcal{B}^{N})$$

$$\times \Pi \mathcal{L}^{K^{-}\pi^{+}}(M_{\mathrm{bc}}|\mathcal{B}^{N},A_{CP}^{N}) \times \Pi \mathcal{L}^{K^{+}\pi^{-}}(M_{\mathrm{bc}}|\mathcal{B}^{N},A_{CP}^{N})$$

$$\times \Pi \mathcal{L}^{K^{-}\pi^{0}}(M_{\mathrm{bc}}|\mathcal{B}^{C},A_{CP}^{C}) \times \Pi \mathcal{L}^{K^{+}\pi^{0}}(M_{\mathrm{bc}}|\mathcal{B}^{C},A_{CP}^{C})$$

$$\times \Pi \mathcal{L}^{K_{S}^{0}\pi^{-}}(M_{\mathrm{bc}}|\mathcal{B}^{C},A_{CP}^{C}) \times \Pi \mathcal{L}^{K_{S}^{0}\pi^{+}}(M_{\mathrm{bc}}|\mathcal{B}^{C},A_{CP}^{C}),$$

Results

- First Evidence for Δ_{0+} with 3.1 σ
- First measurement of ΔA_{CP}
 - Consistent with zero

$$\mathcal{B}(B^0 \to K^{*0}\gamma) = (3.96 \pm 0.07 \pm 0.14) \times 10^{-5},$$

 $\mathcal{B}(B^+ \to K^{*+}\gamma) = (3.76 \pm 0.10 \pm 0.12) \times 10^{-5},$
 $A_{CP}(B^0 \to K^{*0}\gamma) = (-1.3 \pm 1.7 \pm 0.4)\%,$
 $A_{CP}(B^+ \to K^{*+}\gamma) = (+1.1 \pm 2.3 \pm 0.3)\%,$
 $A_{CP}(B \to K^*\gamma) = (-0.4 \pm 1.4 \pm 0.3)\%,$
 $\Delta_{0+} = (+6.2 \pm 1.5 \pm 0.6 \pm 1.2)\%,$
 $\Delta A_{CP} = (+2.4 \pm 2.8 \pm 0.5)\%,$

(a) $K_S^0 \pi^0$

Mode	N_S^B	N_S^B	ϵ [%]	$\mathcal{B} [10^{-5}]$	A_{CP} [%]
	349 ± 2			$4.00 \pm 0.27 \pm 0.24$	_
$B^0 \to K^+\pi^-\gamma$	$2295 \pm 56 \pm 27$	$2339\pm 56\pm 30$	15.61 ± 0.49	$3.95 \pm 0.07 \pm 0.14$	$-1.3 \pm 1.7 \pm 0.4$
$B^+ \to K^+ \pi^0 \gamma$	$572 \pm 32 \pm 12$	$562 \pm 31 \pm 11$	3.66 ± 0.12	$3.91 \pm 0.16 \pm 0.16$	$+1.0 \pm 3.6 \pm 0.3$
$B^+ \to K_S^0 \pi^+ \gamma$	$745 \pm 32 \pm 8$	$721 \pm 32 \pm 9$	5.01 ± 0.14	$3.69 \pm 0.12 \pm 0.12$	$+1.3 \pm 2.9 \pm 0.4$

$BF(B \rightarrow K^*\gamma)$

- New Belle results consistent with previous measurements
 - But slightly (~10%) smaller than
 Babar results which dominated the
 WA.
- Also consistent with theoretical predictions by Bharucha, Starub and Zwicky.
 - Belle results a bit closer to theory than before
- Most precise measurements
 - Can be used to check T₁(0)
 - Already systematic dominant
 - Photon detection and PID

$BF(B^0 \rightarrow K^{*0}\gamma)/(B_s \rightarrow \phi\gamma)$

Calculation

− Used Belle measurement of BF(B_s→ $\phi\gamma$) with 121fb⁻¹

D. Dutta et al. PRD 91 01101 (2015)

$$\mathcal{B}(B_s^0 \to \phi \gamma) = (3.6 \pm 0.5(\text{stat.}) \pm 0.3(\text{syst.}) \pm 0.6(f_s)) \times 10^{-5}$$

 Only used K*⁰ → K⁺π⁻ mode to cancel out common systematics

$$\mathcal{B}(B^0 \to K^{*0}\gamma) = (3.95 \pm 0.07 \pm 0.14) \times 10^{-5}$$

Result

$$\frac{\mathcal{B}(B^0 \to K^{*0}\gamma)}{\mathcal{B}(B_s^0 \to \phi\gamma)} = 1.10 \pm 0.16 \pm 0.09 \pm 0.18$$

- The uncertainty dominated by uncertainties of $BF(B_s \rightarrow \phi \gamma)$
 - The third uncertainty due to f_s , which is a fraction of $Bs^{(*)}Bs^{(*)}$ production from Y(5S)
- Belle result Consistent with LHCb, and theoretical predictions by Ali, Pecjak and Greub and Lyon and Zwicky
 - Can be used to constrain $T_1^{B \to K^*}(0)/T_1^{Bs \to \phi}(0)$

$$\Delta_{0+}$$

 First evidence of isospin violation in b→s transition with 3.1σ significance.

$$\Delta_{0+} = (+6.2 \pm 1.5(\text{stat.}) \pm 0.6(\text{syst.}) \pm 1.2(f_{+-}/f_{00}))\%$$

- Dominant uncertainties are statistical one and due to f_{+}/f_{00} .
- New Belle result is consistent with Babar, and also theoretical predictions within the SM by Kagan and Neubert, and Lyon and Zwicky
- This result will be used to constrain new physics

For example,
Mahmoudi, JHEP 12 (2007) 026
Descotes-Genon, Ghosh, Matias, Ramon, JHEP 06 (2011) 099
Lyon, Zwicky, PRD 88, 094004 (2013).

A_{CP}

- New Belle results are most precise to date
- Consistent with zero and previous measurements by Babar and LHCb
 - Also PDG
- Consistent with theoretical predictions within the SM by Matsumori et al and Paul and Straub
 - Strong constraints to Im(C₇)

Altmannshofer, Straub EPJC 75, 82 (2015) Paul, Straub 1608.02556

Lepton Flavor Dependent Angular Analysis of B→K*I+I-

Angular Analysis of $B^0 \rightarrow K^{*0}I^+I^-$

- LHCb reported 3.4 σ deviation from a SM prediction in P_5 ' for 4 < q^2 < 8GeV² which was obtained from full angular analysis of $B^0 \rightarrow K^{*0} \mu \mu$
 - There is a discussion that the deviation can be explained by a charm loop
- Global fit to radiative and EW penguin B decays gives Wilson coefficient C_9 deviated about -1 from SM values (or C_{11})
 - − Driven by P5', F_L , B(Bs → ϕ μμ) etc.
- Independent analyses/checks are desired.

S.Descotes-Genon et al, PRD 88 074002 (2013)

R_K and R_K *

 LHCb also reported anomaly in Lepton Flavor Universality observables, R_K and R_{K*}

$$R_K = \Gamma(B \to K\mu\mu)/\Gamma(B \to Kee)$$

$$R_{K^*} = \Gamma(B \to K^*\mu\mu)/\Gamma(B \to K^*ee)$$

 Next measurement should be lepton flavor universality in angular observables

Differential Decay Width for B >> K*II

• Differential decay width as a function of 4 variables, q^2 , θ_l , θ_K , and ϕ , is expressed in terms of form factor independent observables, P_i .

S. Descotes-Genon et al. JHEP 05 (2013) 137

$$\begin{split} \frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_L \; \mathrm{d}\cos\theta_K \; \mathrm{d}\phi \; \mathrm{d}q^2} = & \frac{9}{32\pi} \left[\frac{3}{4} (1-F_L) \sin^2\theta_K + F_L \cos^2\theta_K \right. \\ & + \frac{1}{4} (1-F_L) \sin^2\theta_K \cos 2\theta_L \\ P'_{i=4,5,6,8} = & \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}} & - F_L \cos^2\theta_K \cos 2\theta_L + S_3 \sin^2\theta_K \sin^2\theta_L \cos 2\phi \\ & + S_4 \sin 2\theta_K \sin 2\theta_L \cos\phi + S_5 \sin 2\theta_K \sin\theta_L \cos\phi \\ & + S_6 \sin^2\theta_K \cos\theta_L + S_7 \sin 2\theta_K \sin\theta_L \sin\phi \\ & + S_8 \sin 2\theta_K \sin 2\theta_L \sin\phi + S_9 \sin^2\theta_K \sin^2\theta_L \sin2\phi \, \right] \end{split}$$

Reconstruction

- Decay modes
 - $-B^0 \rightarrow K^{*0}I^+I^-, K^{*0} \rightarrow K^+pi^-$
 - B⁺→K*+I+I⁻, K*+ → Ksπ⁺, K⁺π⁰
 - -312 ± 23 events (LHCb 2398 ±57)
- Signal fraction as a function of Mbc

$$-P_i'^e$$
, $P_i'^\mu$ and $Q_i = P_i'^e - P_i'^\mu$

Only measured P₄', P₅', Q₄, Q₅

Folding

- Since statistics is small, we performed folding technique as LHCb did in 2013
 - Use symmetry of trigonometric function to eliminate coefficients other than F_1 , S_3 and another one

$$P_4', S_4: \begin{cases} \phi \to -\phi & \text{for } \phi < 0 \\ \phi \to \pi - \phi & \text{for } \theta_\ell > \pi/2 \\ \theta_\ell \to \pi - \theta_\ell & \text{for } \theta_\ell > \pi/2, \end{cases} P_5', S_5: \begin{cases} \phi \to -\phi & \text{for } \phi < 0 \\ \theta_\ell \to \pi - \theta_\ell & \text{for } \theta_\ell > \pi/2, \end{cases}$$

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2}\frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_L\,\,\mathrm{d}\cos\theta_K\,\,\mathrm{d}\phi\,\,\mathrm{d}q^2} = \frac{9}{32\pi}\left[\frac{3}{4}(1-F_L)\sin^2\theta_K + F_L\cos^2\theta_K\right. \\ \left. + \frac{1}{4}(1-F_L)\sin^2\theta_K\cos2\theta_L\right. \\ \left. - F_L\cos^2\theta_K\cos2\theta_L + S_3\sin^2\theta_K\sin^2\theta_L\cos2\phi\right. \\ \left. - F_L\cos^2\theta_K\cos2\theta_L + S_3\sin^2\theta_K\sin^2\theta_L\cos2\phi\right. \\ \left. + \frac{1}{4}\sin2\theta_K\sin2\theta_L\cos\phi + S_5\sin2\theta_K\sin\theta_L\cos\phi\right. \\ \left. + \frac{1}{4}\sin2\theta_K\sin2\theta_L\cos\phi + S_5\sin2\theta_K\sin\theta_L\cos\phi\right. \\ \left. + \frac{1}{4}\sin2\theta_K\sin2\theta_L\sin\phi + S_9\sin2\theta_K\sin\theta_L\sin\phi\right. \\ \left. + \frac{1}{4}\sin2\theta_K\sin2\theta_L\sin\phi + S_9\sin2\theta_K\sin\theta_L\sin\phi\right. \\ \left. + \frac{1}{4}\sin2\theta_K\sin2\theta_L\sin\phi + S_9\sin2\theta_K\sin\theta_L\sin\phi\right. \\ \left. + \frac{1}{4}\sin2\theta_K\sin2\theta_L\sin\phi + S_9\sin2\theta_K\sin2\theta_L\sin\phi\right. \\ \left. + \frac{1}{4}\sin2\theta_K\sin2\theta_L\sin\phi + S_9\sin2\theta_K\sin2\theta_L\sin\phi\right. \\ \left. + \frac{1}{4}\sin2\theta_K\sin2\theta_L\sin\phi + S_9\sin2\theta_K\sin2\theta_L\sin\phi\right. \\ \left. + \frac{1}{4}\sin2\theta_K\sin2\theta_L\sin\phi + S_9\sin2\theta_K\sin2\theta_L\sin2\phi\right. \\ \left. + \frac{1}{4}\sin2\theta_K\sin2\theta_L\sin\phi + S_9\sin2\theta_K\sin2\theta_L\sin2\phi\right. \\ \left. + \frac{1}{4}\sin2\theta_K\sin2\theta_L\sin\phi + S_9\sin2\theta_K\sin2\theta_L\sin2\phi\right. \\ \left. + \frac{1}{4}\sin2\theta_K\sin2\theta_L\sin\phi + S_9\sin2\theta_K\sin2\phi_L\sin2\phi\right. \\ \left. + \frac{1}{4}\sin2\theta_K\sin2\theta_L\sin\phi + S_9\sin2\theta_K\sin2\phi_L\sin2\phi\right. \\ \left. + \frac{1}{4}\sin2\theta_K\sin2\theta_L\sin\phi + S_9\sin2\theta_K\sin2\phi_L\sin\phi\right. \\ \left. + \frac{1}{4}\sin2\theta_K\sin2\phi_L\sin\phi + S_9\sin2\theta_K\sin2\phi_L\sin\phi\right. \\ \left. + \frac{1}{4}\sin2\theta_K\sin2\phi_L\sin\phi + S_9\sin2\theta_K\sin2\phi_L\sin\phi\right. \\ \left. + \frac{1}{4}\sin2\theta_K\sin2\phi_L\sin\phi + \frac{1}{4}\sin2\phi_L\sin\phi\right. \\ \left. + \frac{1}{4}\sin2\phi_L\sin\phi + \frac{1}{4}\sin2\phi_L\sin\phi\right. \\ \left. + \frac{1}{4}\sin2\phi_L\sin\phi + \frac{1}{4}\sin2\phi_L\cos\phi + \frac{1}{4}\sin2\phi_L\cos\phi\right. \\ \left. + \frac{1}{4}\sin2\phi_L\cos\phi + \frac{1}{4}\sin2\phi_L$$

Results P₄' and P₅'

- Observed 2.6σ deviation from the SM prediction by DHMV
 - Systematic error small (taken very conservatively)

Results Q₄ and Q₅

- Consistent with both SM and NP with $C_9^{\mu}_{NP} = -1$
 - Systematic error small (taken very conservatively)

[4.00, 8.00]

[14.18, 19.00]

 $0.498 \pm 0.410 \pm 0.095$

 $0.778 \pm 0.502 \pm 0.065$

 $0.448 \pm 0.392 \pm 0.076$

 $0.041 \pm 0.565 \pm 0.082$

Global Fit to b >> s

- Including P_5' , Q_5 etc, $R_{K(*)}$, $Bs \rightarrow \mu\mu$, $b \rightarrow s\gamma$
 - Suggest $C_{9\mu}^{NP} \sim -1$

J. Grygier et al., arXiv:1702.03224 submitted to PRD

Search for $B \rightarrow hvv$ with semileptonic tagging

Search for $B \rightarrow h^{(*)}vv$

- If C₉ is deviated from the SM value, vector current in b→svv could be also affected in some BSM models.
- $b \xrightarrow{V} t, c \xrightarrow{V} v$

- Proceeds via penguin or box diagrams
- Theoretically very clean.
 - No charm loop as in b→sl⁺l⁻
- Experimentally, need to tag the other B meson due to final states having multiple neutrinos.
- Hadronic B tagging already done.
- Semileptonic B tagging are used this analysis

A. Buras, et al. JHEP 02 184 (2015)

Mode	$\mathcal{B} [10^{-6}]$
$B^+ o K^+ uar u$	$3.98 \pm 0.43 \pm 0.19$
$B^0 o K^0_{ m S} uar u$	$1.85 \pm 0.20 \pm 0.09$
$B^+ o K^{*+} u ar{ u}$	$9.91 \pm 0.93 \pm 0.54$
$B^0 o K^{*0} uar u$	$9.19 \pm 0.86 \pm 0.50$

Current Status

 For K⁺, K^{*0} and K^{*+} modes, ULs are about 3~5 times larger than theoretical predictions in the SM

A. Buras, et al. JHEP 02 184 (2015)

Reconstruction

- Semileptonic tagging
 - Hierarchical reconstruction of B \rightarrow D^(*)Iv using NeuroBays
 - More efficient than hadronic tagging
- Signal hadron decay modes

-
$$h^{(*)} = K^+, K_S^0, K^{*+}(K_S^0\pi^+, K^+\pi^0), K^{*0}(K^+\pi^-), \pi^+, \pi^0, \rho^+, \rho^0$$

- Requirement of no other particles
 - No charged tracks, π^0 nor K_L^0
- Background suppression
 - Continuum : event shape
- Signal is extracted from extra energy in ECL

Results

- Fit with histogram templates
 - Signal
 - Backgrounds
 - $b \rightarrow c$, continuum, $b \rightarrow u$, d,s
 - Relative fractions are fixed to MC values
- Signal yields consistent with zero
 - But signal seen for K⁺ and K^{*+}?

Channel	Observed signal yield	Significance
$K^+\nu\bar{\nu}$	$17.7 \pm 9.1 \pm 3.4$	1.9σ
$K^0_{ m S} u ar{ u}$	$0.6 \pm 4.2 \pm 1.4$	0.0σ
$K^{*+}\nu\bar{\nu}$	$16.2 \pm 7.4 \pm 1.8$	2.3σ
$K^{*0}\nu\bar{\nu}$	$-2.0 \pm 3.6 \pm 1.8$	0.0σ
$\pi^+ uar u$	$5.6 \pm 15.1 \pm 5.9$	0.0σ
$\pi^0 uar u$	$0.2 \pm 5.6 \pm 1.6$	0.0σ
$\rho^+ \nu \bar{\nu}$	$6.2\pm12.3\pm2.4$	0.3σ
$ ho^0 uar u$	$11.9 \pm 9.0 \pm 3.6$	1.2σ

Upper Limits

- Worlds most stringent upper limits on
 - $h^{(*)} = K_S^0$, K^{*0} , π^+ , π^0 , ρ^+ , ρ^0
 - Upper limit on BF(B→ $K^{*0}vv$) is just two times larger than a SM prediction
- The BF and F_L measurable at Belle II

Channel	Efficiency	Expected limit	Observed limit
$K^+ \nu \bar{\nu}$	2.16×10^{-3}	0.8×10^{-5}	1.9×10^{-5}
$K^0_{ m S} uar u$	0.91×10^{-3}	1.2×10^{-5}	1.3×10^{-5}
$K^{*+}\nu\bar{\nu}$	0.57×10^{-3}	2.4×10^{-5}	6.1×10^{-5}
$K^{*0}\nu\bar{\nu}$	0.51×10^{-3}	2.4×10^{-5}	1.8×10^{-5}
$\pi^+ u\bar{\nu}$	2.92×10^{-3}	1.3×10^{-5}	1.4×10^{-5}
$\pi^0 uar u$	1.42×10^{-3}	1.0×10^{-5}	0.9×10^{-5}
$ ho^+ uar{ u}$	1.11×10^{-3}	2.5×10^{-5}	3.0×10^{-5}
$ ho^0 u ar{ u}$	0.82×10^{-3}	2.2×10^{-5}	4.0×10^{-5}

Summary

- New measurement of B \rightarrow K* γ performed.
 - First evidence for Isospin Violation in $b \rightarrow s\gamma$ decay
 - All the measurements are most precise to date.
 - Used to constrain new physics
- Lepton flavor dependent angular analysis of B→K*I+I-
 - Consistent with both SM and NP with $C_{9\mu}^{NP} = -1$
- Search for $B \rightarrow h v v$
 - The upper limit on K*⁰ modes just two times larger than SM predictions → BF and F₁ at Belle II

backup

Systematics Table for BF and Δ_{0+} in B \rightarrow K* γ

Source	$K_S^0\pi^0$	$K^+\pi^-$	$K^+\pi^0$	$K_S^0\pi^+$	K^{*0}	K^{*+}	Δ_{0+}
photon reconstruction effi.	2.0	2.0	2.0	2.0	2.0	2.0	_
tracking effi.	0.7	0.7	0.4	1.1	0.7	0.8	0.05
K/π identification effi.	_	1.7	0.8	0.8	1.6	0.8	0.38
π^0 reconstruction effi.	1.6	_	1.6	_	0.1	0.5	0.21
K_S^0 reconstruction effi.	0.2	_	_	0.2	< 0.1	0.1	0.05
$\mathcal{O}_{\mathrm{NB}}$ and π^0/η veto effi.	0.6	0.6	0.6	0.6	0.6	0.6	_
ΔE selection effi.	1.1	< 0.1	1.1	0.1	0.1	0.4	0.15
charge asymmetry in effi.	_	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.01
MC stat.	0.4	0.1	0.3	0.2	0.1	0.2	0.11
number of $B\bar{B}$ pairs	1.4	1.4	1.4	1.4	1.4	1.4	_
f_{+-}/f_{00}	1.2	1.2	1.2	1.2	1.2	1.2	1.16
lifetime ratio	_	_	_	_	_	_	0.19
higher kaonic resonance	0.3	0.3	0.3	0.3	0.3	0.3	_
cross-feed	0.2	0.2	0.3	0.2	0.2	0.2	0.03
peaking backgrounds	1.6	1.2	1.2	1.1	1.2	1.1	0.14
background A_{CP} and Δ_{0+}	0.2	< 0.1	< 0.1	0.1	< 0.1	< 0.1	0.03
fixed parameters in fit	3.9	0.1	1.5	< 0.1	0.1	0.2	0.10
fitter bias	2.4	0.2	1.3	0.7	0.2	0.2	0.08
total	5.9	3.5	4.2	3.3	3.5	3.3	1.29

Systematics Table A_{CP} and ΔA_{CP} in $B \rightarrow K^* \gamma$

Source	$K^+\pi^-$	$K^+\pi^0$	$K_S^0\pi^+$	K^{*0}	K^{*+}	K^*	ΔA_{CP}
tracking effi.	_	_	_	< 0.01	< 0.01	< 0.01	< 0.01
K/π identification effi.	_	_	_	< 0.01	< 0.01	< 0.01	< 0.01
π^0 reconstruction effi.	_	_	_	< 0.01	< 0.01	< 0.01	< 0.01
K_S^0 reconstruction effi.	_	_	_	< 0.01	< 0.01	< 0.01	< 0.01
charge asymmetry in K/π detection	0.40	0.04	0.41	0.40	0.25	0.28	0.48
cross-feed	0.02	0.04	0.03	0.02	0.02	0.02	0.02
peaking backgrounds	0.04	0.06	0.08	0.04	0.06	0.05	0.04
background A_{CP} and Δ_{0+}	0.10	0.13	0.09	0.10	0.10	0.10	0.05
fixed parameters in fit	< 0.01	0.13	0.02	< 0.01	0.02	< 0.01	0.02
fitter bias	0.07	0.16	0.12	0.07	0.09	0.08	0.12
total	0.42	0.26	0.45	0.42	0.30	0.31	0.50

Difference of BF between Belle and Babar

- There is slight difference. I think one of the reasons might be due to modeling of B \rightarrow Xs γ background
 - Dominant peaking background from B \rightarrow Xs γ is B \rightarrow K $\pi\pi\gamma$
- Belle models B→Xs γ background as
 - Exclusive B \rightarrow Kp γ and B \rightarrow K* $\pi\gamma$ with measured BFs
 - Inclusive B \rightarrow Xs γ (other than B \rightarrow K* $\pi\gamma$ and B \rightarrow K $\rho\gamma$) decayed with PYTHIA.
- Babar modeled B→Xs γ background as
 - − Inclusive B → Xs γ decayed with PYTHIA.

A. Yarritu, SLAC-PUB-14233

- We simulated $B \rightarrow Xs\gamma$ with Belle PYTHIA setting and found that fraction of $B \rightarrow K\pi\pi\gamma$ is significantly smaller than PDG value.
 - If we used the PYTHIA background (wrong background description), the BFs of B \rightarrow K* γ become about 3% higher.

BF with wrong assumption

• Wrong BF(B \rightarrow K $\pi\pi\gamma$) assumption

Previous Belle BF

- Previous Belle assumed
 - $f_{+}/f_{00} = 1$
- If we take latest value
 - $f_{+}/f_{00} = 1.058.$
 - BF(B \rightarrow K*0 γ) = 4.24 x 10⁻⁵
 - BF(B \rightarrow K*+ γ) = 4.02 x 10⁻⁵

Previous Belle Results on Δ_{0+}

- Previous Belle assumed
 - $f_{+}/f_{00} = 1$
 - $\tau_{B+}/\tau_{B0} = 1.086$
- If we take latest value
 - $f_{+}/f_{00} = 1.058$
 - $-\tau_{B+}/\tau_{B0} = 1.076$
 - $-\Delta_{0+} = +6.3\%$

