New Physics implications from ε'/ε

Kei Yamamoto (KMI, Nagoya University)

FPCP2017 - Flavor Physics & CP Violation @ Prague 8th. June 2017

Direct CP violation (K->\pi\pi decay) : \epsilon'/\epsilon

$$K_L \to \pi^+ \pi^- \& K_L \to \pi^0 \pi^0$$

$$\eta_{00} = \frac{A(K_{\rm L} \to \pi^0 \pi^0)}{A(K_{\rm S} \to \pi^0 \pi^0)} \qquad \left| \frac{\eta_{00}}{\eta_{+-}} \right|^2 \simeq 1 - 6 \operatorname{Re}(\frac{\varepsilon'}{\varepsilon})$$
$$\eta_{+-} = \frac{A(K_{\rm L} \to \pi^+ \pi^-)}{A(K_{\rm S} \to \pi^+ \pi^-)}$$

$$\left(\frac{\epsilon'}{\epsilon}\right)_{\rm exp} = (16.6 \pm 2.3) \times 10^{-4} \quad \text{[NA48, KTeV]}$$

ε'/ε

ε'/ε $A_{0,2} = A(K^0 \to (\pi\pi)_{I=0,2})$ ϵ'_K $\frac{\omega}{\sqrt{2} |\epsilon_K|_{\exp} \operatorname{Re} A_0}$ $\frac{1}{\omega}$ $\mathrm{Im}A_2$ ImA_{c} ϵ_K QCD penguin EW penguin u, du, d \overline{u}, d $\Delta I = 1/2$ rule $\frac{\text{Re}A_0}{\text{Re}A_2} \equiv \frac{1}{\omega} = 22.46$

In SM, there is accidental cancellation between ImA_0 and ImA_2 due to the enhancement factor $1/\omega$

ε'/ε $A_{0,2} = A(K^0 \to (\pi\pi)_{I=0,2})$ ϵ'_K $\frac{1}{\omega}$ Im A_2 ω $ImA_0 \frac{1}{\sqrt{2}} |\epsilon_K|_{\exp} \operatorname{Re} A_0$ ϵ_K QCD penguin EW penguin u, du, d $\overline{u}, \overline{d}$ $O_8 = \frac{3}{2} (\bar{s}_\alpha d_\beta)_{V-A} \sum e_q (\bar{q}_\beta q_\alpha)_{V+A}$ $O_6 = (\bar{s}_\alpha d_\beta)_{V-A} \sum (\bar{q}_\beta q_\alpha)_{V+A}$

<O6> and <O8> have chiral enhancement factor

$$\langle Q_6(\mu) \rangle_0 = -4 \left[\frac{m_{\rm K}^2}{m_s(\mu) + m_d(\mu)} \right]^2 (F_K - F_\pi) B_6^{(1/2)}$$
 First

$$\langle Q_8(\mu) \rangle_2 = \sqrt{2} \left[\frac{m_{\rm K}^2}{m_s(\mu) + m_d(\mu)} \right]^2 F_\pi B_8^{(3/2)}$$
 See

First Lattice results in 2015 !

See C. Sachrajda Talk 4/22

ϵ'/ϵ anomaly

Using the first lattice result, $\epsilon'/\,\epsilon$ has been calculated in the SM as

$$\mathsf{SM} \quad \left(\frac{\epsilon'}{\epsilon}\right)_{\mathrm{SM}} = \begin{cases} (1.38 \pm 6.90) \times 10^{-4}, & [\mathrm{RBC-UKQCD}] \\ (1.9 \pm 4.5) \times 10^{-4}, & [\mathrm{Buras \ et \ al.}] \\ (1.06 \pm 5.07) \times 10^{-4}. & [\mathrm{Kitahara \ et \ al.}] \end{cases}$$

X NNLO QCD in progress [M.Cerda-Sevilla, M.Gorbahn, S.Jager, A.Kokulu]

Exp
$$\left(\frac{\epsilon'}{\epsilon}\right)_{exp} = (16.6 \pm 2.3) \times 10^{-4}$$
 [NA48, KTeV]

2.9σ difference

New physics in ϵ'/ϵ ?

ε'/ε beyond SM

NP in ImA₂ (O₈) is favored because of $\Delta I=1/2$ enhancement factor : $1/\omega \sim 22$

The type of (ImA₂)_{NP} :

Let us discuss the model-independent features firstly, and then model-dependent ones.

Kaon observables in Z & Z' scenario

Correlations between Kaon observables

[A.J.Buras, D.Buttazzo and R.Knegjens, JHEP1511(2015)166 A.J.Buras, JHEP1604(2016)071 C.Bobeth, A.J.Buras, A.Celis and M.Jung, 1703.04753]

 $K_L \to \pi^0 \nu \bar{\nu} \mid K^+ \to \pi^+ \nu \bar{\nu}$ ε'/ε $K_L \rightarrow \mu^+ \mu^ \Delta M_K$ ε_K $\mathrm{Im}\Delta$ * * * * $\text{Re}\Delta$ * * * *

: Direct CPV and depends on only Im part \Rightarrow Strong correlation with ϵ'/ϵ $K_1 \rightarrow \pi^0 \nu \nu$

> Only RH (or LH) scenario $\Rightarrow K_1 \rightarrow \pi^0 vv$ is suppressed RH + LH scenario \Rightarrow K_I $\rightarrow \pi^0 \nu \nu$ can be enhanced

 $BR(K_L \to \pi^0 \nu \bar{\nu})_{exp} < 2.6 \times 10^{-8} \ (90\% C.L.)$ \leftarrow KOTO @ J-PARC

: depends on Im & Re parts \Rightarrow no strong correlation with ϵ'/ϵ $K^+ \rightarrow \pi^+ \nu \nu$ can be enhanced by up to a factor of 2 (LH) and 5.7 (RH) $BR(K^+ \to \pi^+ \nu \bar{\nu})_{exp} = (1.73^{+1.15}_{-1.05}) \times 10^{-10} \quad \leftarrow \text{NA62} @ \text{CERN}$

See R. Marchevski Talk

Notes on Z scenario

SMEFT

• Recently, the Z scenarios have been studied in the framework of SMEFT ($\mu_{EW} < \mu < \mu_{NP}$)

[C.Bobeth, A.J.Buras, A.Celis and M.Jung, JHEP 1704 (2017) 079 & 1703.04753] [M.Endo, T.Kitahara, S.Mishima and **KY**, PLB771(2017)37]

RH Z NP scenario gets strong constraint from KKbar mixing (ΔF=2) through RG effects

[C.Bobeth, A.J.Buras, A.Celis and M.Jung, 1703.04753]

• Z model is not favored by anomalies in b \rightarrow s transitions (P₅', R(K), R(K*),,,), which suggest negative C₉^{NP} $C_9^{NP} < 0$ $O_9 = (\bar{s}_L \gamma_\mu b_L)(\bar{\mu}\gamma^\mu \mu)$

In Z model, it is hard to produce large C_9^{NP} due to smallness of the vector coupling to charged lepton

Models solving ε'/ε anomaly

Several new physics models have been studied to explain ε'/ε anomaly

MSSM chargino Z penguin	[M. Endo, S. Mishima, D. Ueda and KY, PLB762(2016)493]
gluino Z penguin	[M. Tanimoto and KY, PTEP(2016)no.12,123B02]
gluino box	[T.Kitahara, U.Nierste and P.Tremper, PRL117(2016)no.9, 091802 A.Crivellin, G.D'Ambrosio, T.Kitahara and U.Nierste, 1703.05786]
Vector-like quarks	[C.Bobeth, A.J.Buras, A.Celis and M.Jung, JHEP1704(2017)079]
Little Higgs Model with T-parity	[M.Blanke, A.J.Buras and S.Recksiegel, EPJ.C76 (2016)no.4,182]
331 model	[A.J.Buras and F.De Fazio, JHEP1603(2016)010 & JHEP1608 (2016) 115]
Right handed current [V. S.Alioli, V.Cirig	Cirigliano, W.Dekens, J.de Vries and E.Mereghetti, PLB 767 (2017) 1 Iliano, W.Dekens, J.de Vries and E.Mereghetti, JHEP1705 (2017)086]

• Different implications (correlations & predictions) for other observables appear depending on models \Rightarrow Possibility of model discriminations

MSSM

Model

Flavor violating effects come from off diagonal elements of squark mass matrix

Implications of $(\epsilon' / \epsilon)_{NP}$ in MSSM

- SUSY scale is O(TeV)
- Different correlations between (ϵ' / ϵ) and

 $K \rightarrow \pi \nu \nu$ appear depending on scenarios

 $B(K_{L} \rightarrow \pi^{0} \nu \nu) \quad B(K^{+} \rightarrow \pi^{+} \nu \nu)$

Chargino Z penguin	< 0.6 SM	O(10~100%) effect
Gluino Z penguin	< 3 SM ?	O(10~100%) effect?
Gluino box	< 2 SM	< 1.4 SM

11/22

[C.Bobeth, A.J.Buras, A.Celis and M.Jung '17]

Vector-Like Quarks (VLQ)

Model

$$\begin{split} \mathrm{G}_{\mathrm{SM}} &\equiv \mathrm{SU}(3)_{\mathrm{c}} \otimes \mathrm{SU}(2)_{\mathrm{L}} \otimes \mathrm{U}(1)_{\mathrm{Y}}, \\ \mathrm{G}_{\mathrm{SM}}' &\equiv \mathrm{G}_{\mathrm{SM}} \otimes \mathrm{U}(1)_{\mathrm{L}_{\mu}-\mathrm{L}_{\tau}}. & G_{\mathrm{SM}}'(S) \\ & \checkmark & G_{\mathrm{SM}}'(\Phi) & (\mathsf{S}:\mathsf{SU}(2)_{\mathrm{L}} \text{ singlet}) \\ & \mathsf{new} \text{ gauge}: \mathsf{Z}' & G_{\mathrm{SM}}'(\Phi) & (\Phi:\mathsf{SU}(2)_{\mathrm{L}} \mathsf{ doublet}) \end{split}$$

11 VLQ models under single-VLQ scenario

 $G_{\rm SM}$ (D, Td, Tu, QV, Qd)3LH, 2RH $G'_{\rm SM}(S)$ (D, QV)1LH, 1RH $G'_{\rm SM}(\Phi)$ (D, Td, Tu, Qd)3LH, 1RH

- singlets : D(1, -1/3, -X), doublets : $Q_V(2, +1/6, +X)$, $Q_d(2, -5/6, -X)$, triplets : $T_d(3, -1/3, -X)$, $T_u(3, +2/3, +X)$,
- FCNC is occurred through yukawa couplings $\lambda_i^{
 m VLQ}$

 $G_{
m SM}$ Z model $G'_{
m SM}(S)$ Z' model (No Z contribution because $(\bar{\psi}_i \gamma_\mu \psi_j)(S^{\dagger}D^{\mu}S)$ is absent) $G'_{
m SM}(\Phi)$ Z & Z' model

(ε'/ ε)_{NP} in VLQs

		O₈ & O'₈ $O_8 = \frac{3}{2} (\bar{s}_{\alpha} d_{\beta})_{V-A} \sum_q e_q (\bar{q}_{\beta} q_{\alpha})_{V+A}$	(ε'/ε) _{NP}
	((G _{SM} ,G' _{SM} (Φ)))	\checkmark	ОК
	((G' _{SM} (Φ)))	 But Z-Z' mixing is constrained by EW precision test 	NO
$s \longrightarrow d$ $q \longrightarrow q$	((G' _{sM} (S) , G' _{sM} (Φ)))	Can not produce (Z'sd coupling has L or R, only)	NO

$\label{eq:sphere:sphe$

Implications of $(\epsilon' / \epsilon)_{NP}$ in VLQs

 $(\epsilon' / \epsilon)_{NP}$ vs. $K_L \rightarrow \pi^0 vv$ $K^+ \rightarrow \pi^+ \nu \nu$ $M_{VLO} = 10 \text{TeV}(\text{Dark}) 1 \text{TeV}(\text{Light})$ \mathbf{G}_{SM} \mathbf{G}_{SM} $Br(K^+ \rightarrow \pi^+ \nu \nu) < 1.5 \text{ SM (RH)}$ Q_v VLQ (RH) < SM (LH) In G_{SM} scenario, $K_1 \rightarrow \pi^0 v v$ is D VLQ (LH) $\mathsf{BR}\left(\mathsf{K}_{\mathrm{L}} \rightarrow \pi^0 \; v \, \overline{v}\right) / 10^{-11}$ suppressed. SM G′_{SM} (Φ) $Br(K^+ \rightarrow \pi^+ \nu \nu) < 5 SM (RH)$ 3 This suppression is significantly < 2 SM (LH) weaker for QV and Qd models (RH) than for D, Td and Tu (LH). 1 0 5 10 15 20 $\left(\delta\epsilon'/\epsilon\right)/10^{-4}$ G'_{SM} (Φ) Similar to G_{SM}

[M.Blanke, A.J.Buras and S.Recksiegel,'16]

Little Higgs Model with T-parity (LHT)

Model

- Idea : Higgs as a pseudo-Goldstone boson of a spontaneously broken global symmetry
- New heavy gauge bosons $W_{H\pm}$, Z_{H} , A_{H} & heavy scalar triplet Φ are introduced
- Consider T-parity to avoid the constraint from EW precision test

FCNC structure : New sources of flavor & CP violation are introduced in T-odd sector

Z' penguin does not appear due to T-parity

• Z model with LH scenario

Implications of $(\epsilon' / \epsilon)_{NP}$ in LHT

 $K_L \rightarrow \pi^0 \nu \nu$ is suppressed

 $K^+ \rightarrow \pi^+ \nu \nu$ has small modification

331 model

Model

 $SU(3)_C \times SU(3)_L \times U(1)_X \Rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y \Rightarrow SU(3)_C \times U(1)_{em}$

- Requirement of anomaly cancelation + asymptotic freedom of QCD implies number of generations = number of colors
- 24 models characterized by different β , tan β bar and fermion representations 24 \rightarrow 7 (by EWPT) M9, M8, M6, M11, M3, M16, M14
- FCNC structure

The different treatment of the 3rd generation LH quarks generates FCNCs at tree level through Z'

$(\epsilon'/\epsilon)_{NP}$ in 331 model

- Z' model with LH scenario
- Three models M8, M9, M16 can explain $(\varepsilon' / \varepsilon)$

Implications of $(\epsilon' / \epsilon)_{NP}$ in 331 model

	$K_L \rightarrow \pi^0$ νν & K ⁺ → π ⁺ νν	Bs → μμ	C ₉ (P5' anomaly)	
M8	Very small effect	Can be up to 20%	no impact	
M9	Very small effect	Can be up to 20%	no impact	
M16	Small effect	no impact	δC9 < 0 can realize	
		M9	M16	

Right handed model

Model

Consider new right-handed dim.6 operator

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{2}{v^2} i \tilde{\varphi}^{\dagger} D_{\mu} \varphi \, \bar{u}_R^i \gamma^{\mu} \xi_{ij} d_R^j + \text{h.c.}, \rightarrow \mathcal{L}_{\text{SM}} + \frac{g}{\sqrt{2}} \left[\xi_{ij} \, \bar{u}_R^i \gamma^{\mu} d_R^j \, W_{\mu}^+ \right] \left(1 + \frac{h}{v} \right)^2 + \text{h.c.}$$

$$u_R \underbrace{\bigvee_{\mathsf{W}_{\mathsf{R}}} d_{\mathsf{R}}}_{\mathsf{W}_{\mathsf{L}}} \Rightarrow \underbrace{u_{\mathsf{R}} \underbrace{\bigvee_{\mathsf{W}_{\mathsf{L}}} d_{\mathsf{R}}}_{\mathsf{W}_{\mathsf{L}}} u_{\mathsf{R}} \underbrace{\bigvee_{\mathsf{W}_{\mathsf{L}}} d_{\mathsf{R}}}_{\mathsf{S}} u_{\mathsf{L}} u_{\mathsf{R}} \underbrace{\bigvee_{\mathsf{M}_{\mathsf{L}}} d_{\mathsf{R}}}_{\mathsf{S}} u_{\mathsf{R}} \underbrace{\bigvee_{\mathsf{M}_{\mathsf{M}_{\mathsf{M}}} d_{\mathsf{R}}}_{\mathsf{S}} u_{\mathsf{M}} \underbrace{\bigvee_{\mathsf{M}_{\mathsf{M}_{\mathsf{M}}} d_{\mathsf{M}}}_{\mathsf{S}} u_{\mathsf{M}} \underbrace{\bigvee_{\mathsf{M}_{\mathsf{M}_{\mathsf{M}}} d_{\mathsf{M}}}_{\mathsf{S}} u_{\mathsf{M}} \underbrace{\bigvee_{\mathsf{M}_{\mathsf{M}_{\mathsf{M}}} d_{\mathsf{M}}}_{\mathsf{M}} u_{\mathsf{M}} \underbrace{\bigvee_{\mathsf{M}_{\mathsf{M}_{\mathsf{M}}} d_{\mathsf{M}}}_{\mathsf{M}} u_{\mathsf{M}} \underbrace{\bigvee_{\mathsf{M}_{\mathsf{M}_{\mathsf{M}}} d_{\mathsf{M}}}_{\mathsf{M}} \underbrace{\bigvee_{\mathsf{M}_{\mathsf{M}_{\mathsf{M}}} d_{\mathsf{M}} u_{\mathsf{M}}}_{\mathsf{M}} \underbrace{\bigvee_{\mathsf{M}_{\mathsf{M}_{\mathsf{M}}} u_{\mathsf{M}} \underbrace{\bigvee_{\mathsf{M}_{\mathsf{M}_{\mathsf{M}}} u_{\mathsf{M}}} u_{\mathsf{M}} \underbrace{\bigvee_{\mathsf{M}_{\mathsf{M}_{\mathsf{M}}} u_{\mathsf{M}} u_{\mathsf{M}}} u_{\mathsf{M}} \underbrace{\bigvee_{\mathsf{M}_{\mathsf{M}_{\mathsf{M}}} u_{\mathsf{M}} u_{\mathsf{$$

New Left-Right operator become O8 & O6

$$\begin{array}{ccc} \mathcal{O}_{1LR}^{ij\,lm} = \bar{d}^m \gamma^\mu P_L u^l \, \bar{u}^i \gamma_\mu P_R d^j \\ \mathcal{O}_{2LR}^{ij\,lm} = \bar{d}^m_\alpha \gamma^\mu P_L u^l_\beta \, \bar{u}^i_\beta \gamma_\mu P_R d^j_\alpha \end{array} \xrightarrow{\mathsf{u}_R} \begin{array}{c} \mathsf{u}_R \\ \mathsf{s} \end{array} \xrightarrow{\mathsf{d}_R} \\ \mathsf{s} \end{array} \xrightarrow{\mathsf{d}_R} O_6 \& O_8 \end{array}$$

 \mathbb{V}

 $(\epsilon' / \epsilon)_{NP}$ in RH model

 (ϵ' / ϵ) anomaly $\Rightarrow \operatorname{Im} \xi_{ud} \in [0.7, 3] \cdot 10^{-6}$, $\operatorname{Im} \xi_{us} \in [1, 7] \cdot 10^{-7}$ Correspond to $m_{WR} \sim [100, 300]$ TeV for O(1) phase $\operatorname{Im} \xi_{ud,us} \sim (v^2 / \Lambda^2) \sin \phi_{ud,us}$ Implications of $(\epsilon' / \epsilon)_{NP}$ in RH model

Right handed currents are constrained by EDMs

Other constraints are weaker

Collider search > 1 TeV Beta decay > 1~10 TeV

Model discrimination

		$K_L \rightarrow \pi^0$ νν	Κ⁺→π⁺νν	Others
MSSM chargino Z pen.	Z (LH)	negative	O(10~100%) effect	C ₉ ^{NP} NO
MSSM gluino Z pen.	<mark>Z</mark> (LH + RH)	positive (< 3 SM) ? negative	O(10~100%) effect?	C ₉ ^{NP} NO
MSSM gluino box	box	positive (< 2 SM) negative	< 1.4 SM	
VLQ G _{SM}	Z (LH or RH)	negative	< 1.5 SM (RH) < SM (LH)	C ₉ [№] NO
VLQ G' _{SM} (Φ)	Z (LH or RH)	negative	< 5 SM (RH) < 2 SM (LH)	C_9^{NP} by Z' (only partly solved)
LHT	<mark>Z'</mark> (LH)	negative	< 10% effect	B(Bs→µµ) > SM, C_9^{NP} NO
331 model M8	<mark>Z'</mark> (LH)	< O(1%) effect	< O(1%) effect	δB(Bs→μμ)< 0.2 SM, C ₉ [№] [-0.2, 0.2]
331 model M9	<mark>Z'</mark> (LH)	< O(1%) effect	< O(1%) effect	δB(Bs→μμ) < 0.2 SM, C ₉ ^{NP} [-0.2, 0.2]
331 model M16	<mark>Z'</mark> (LH)	< 20% effect	< 5% effect	δB(Bs→μμ) < 0.07 SM, C ₉ [№] [-0.6, -0.6]
Right handed model	W _R	no effect	no effect	EDM

Simultaneous consideration of various flavor observables ($K \rightarrow \pi \nu \nu$, P5', Bs $\rightarrow \mu \mu$, EDM,,,) may allow to distinguish between these models.

Summary

- New 2.9 σ anomaly in ϵ'/ϵ .
- The ε'/ε anomaly has been explained in several NP models (MSSM, VLQs, LHT, 331, RH current).
- In most of the models, NP contributions to ε'/ ε are dominated by Z or Z' exchanges.
- $K_L \rightarrow \pi^0 v v$ has strong correlation with ϵ' / ϵ .
- The measurements of $K^+ \rightarrow \pi^+ \nu \nu \& K_{L} \rightarrow \pi^0 \nu \nu$ will be important test of these models.
- Moreover, simultaneous consideration of various flavor observables ($K \rightarrow \pi vv$, P5', Bs $\rightarrow \mu\mu$, EDM,,,) will allow further to discriminate among the models.