

ATLAS & CMS HLLHC Upgrades

جي

Flavor Physics Prospects

LHC Upgrade plan

Run	Year	√s (TeV)	\mathcal{L} (10 ³⁴ /cm ² s)	$\int \mathcal{L} dt (fb^{-1})$	Atlas	CMS
1	2009-2012	7-8	0.5	30		
2	2015-2018	13-14	1	150		
3	2021-2023	14	2	300		
4-5	2026-2035	14	5-7	3000	Major	Upgrades

HL-LHC: the challenge

High Luminosity (5 to $7 \times L$ wrt now):

- larger collision rate
- larger pile up: 40 (now) -> 140/200 interactions per crossing
- higher detector occupancy
- large radiation background

Long running Time (~ 10 Years)

- radiation damage
- ageing & obsolescence

HL-LHC: the challenge

High Luminosity (5 to $7 \times L$ wrt now):

- larger collision rate
- larger pile up: 40 (now) -> 140/200 interactions per crossing
- higher detector occupancy
- large radiation background

Long running Time (~ 10 Years)

- radiation damage
- ageing & obsolescence

Maintain / improve present performances Exploit at best the HLLC Physics potential

Omni Purpose Challenge

Exploit collider potential to:

- extend reach for New Physics
- improve SM measuremnts
 - Higgs properties,
 - top properties,
 - diboson scattering, ...
- improve precision measurements in the Flavor sector
 - CP, rare B decays
 - top FCNC

Upgrade detectors without compromising any of the above

ATLAS Upgrade

Significant upgrade for RUN2 (2019)

- $-\mu$ small wheel forward
- Fast Tracking Trigger at L1.5
- Higher granularity calorimeter @ L1

Phase 2

- Upgrade part of the μ system
- HW L1 trigger
- Replace tracking:
 - Sí+Gas -> Sí only

ATLAS Tracking at HLLHC

Completely NEW Si -based detector

Granularity increased x 4

Track trigger information + rough topological selection @ HW level

Trigger+DAQ

- L1 @ 750 KHz, 12.5 μs (now 3.6) latency, HLT output 7.5 KHz (now ~ 1):
 - Bandwidth x 10/15, CPU x 15/30
 - New electronics for Barrel EMC
 - New electronics for μ -system (CSC,DT)
 - high p_T tracks @ L1

Trigger+DAQ

- L1 @ 750 KHz, 12.5 μs (now 3.6) latency, HLT output 7.5 KHz (now ~ 1):
 - Bandwidth x 10/15, CPU x 15/30
 - New electronics for Barrel EMC
 - New electronics for μ -system (CSC,DT)
 - high p_T tracks @ L1

NEW Fw Calorimeter

· radiation hard, high granularity

Trigger+DAQ

- L1 @ 750 KHz, 12.5 μs (now 3.6) latency, HLT output 7.5 KHz (now ~ 1):
 - Bandwidth x 10/15, CPU x 15/30
 - New electronics for Barrel EMC
 - New electronics for μ -system (CSC,DT)
 - high ptracks @ L1

NEW Fw Calorimeter

· radiation hard, high granularity

Extend μ coverage η<3

GEM + RPC

Trigger+DAQ

- L1 @ 750 KHz, 12.5 μs (now 3.6) latency, HLT output 7.5 KHz (now ~ 1):
 - Bandwidth x 10/15, CPU x 15/30
 - New electronics for Barrel EMC
 - New electronics for μ -system (CSC,DT)
 - high p_T tracks @ L1

· radiation hard, high granularity

Extend μ coverage η<3

GEM + RPC

New Tracker

- radiation hard
- hígh granularity
- larger acceptance (η<4)
- readout high p_T tracks @ 40 MHz for L1

NEW Layout

- less detector layers
- pixel extended down to η <4

NEW Layout

- less detector layers
- pixel extended down to η <4

Radiation Hard

- n on p detectors (now p on n)

Increase granularity

- ~ same pitch
- reduce strip lenght

Reduced material budget

NEW Layout

- less detector layers
- pixel extended down to η <4

Radiation Hard

- n on p detectors (now p on n)

Increase granularity

- ~ same pitch
- reduce strip lenght

Overall increased resolution

NEW Layout

- less detector layers
- pixel extended down to η<4

Radiation Hard

- n on p detectors (now p on n)

Increase granularity

- ~ same pitch
- reduce strip lenght

Overall increased resolution

LI track trigger: Pon S, Son S modules

Li tracking with new CMS tracker

Two Si sensors stacked in one detector module, readout by the same chip

- Inner : Píxel + Stríp (PS)
- Outer : Strip + Strip

Li tracking with new CMS tracker

Two Si sensors stacked in one detector module, readout by the same chip

- Inner : Pixel + Strip (PS)
- Outer : Strip + Strip

Allows fast selection of $p_T > 2$ GeV tracks

- data size reduced by x10
- transmitted at 40 MHz BX frequency to the LI

Li tracking with new CMS tracker

Two Si sensors stacked in one detector module, readout by the same chip

- Inner : Pixel + Strip (PS)
- Outer : Strip + Strip

Allows fast selection of $p_T > 2$ GeV tracks

- data size reduced by x10
- transmitted at 40 MHz BX frequency to the L1

Sizeable improvement of trigger performances

DEGLI STUDI PLADOVA Flavor Physics Perspectives at HLLHC

Flavor Benchmark studies:

- $-B_s \rightarrow J/\psi \Phi \text{ (ATLAS)}$
- $-B_s \rightarrow \mu\mu$ (CMS)
- $-B_s \rightarrow \Phi\Phi$ (CMS)
- $-t \rightarrow qZ/W/H/\gamma$ FCNC (ATLAS,CMS)

\overline{B}_s -> J/ψΦ with ATLAS at the HLLHC

Current experimental precision on ϕ_s much worse than SM expectation

$B_s \rightarrow J/\psi \Phi$ with ATLAS at the HLLHC

Current experimental precision on ϕ_s much worse than SM expectation New detector sizably improves on $\sigma(t(B_s))$ (100 -> 35 fs)

Need to increase trigger thresholds:

$$-p_{T}(\mu) > 3.5+3.5 \text{ (now)}$$

$$-p_{T}(\mu) > 6+6 \text{ or } 11+11 \text{ (Run2)}$$

$$-p_{T}(\mu) > 11+11 (HLLHC)$$

Harder cuts improve $\sigma(t(B_s))$ by ~ 30%

B_s -> J/ψΦ with ATLAS : expectations

	2011*)	2012	2015-17		2019-21	2023-30+
Detector	current	current	IBI	L	IBL	ITK
Average interactions per BX $<\mu>$	6-12	21	60)	60	200
Luminosity, fb^{-1}	4.9	20	100		250	3 000
Di- μ trigger $p_{\rm T}$ thresholds, GeV	4 - 4(6)	4 - 6	6 - 6	11 - 11	11 - 11	11 - 11
Signal events per fb ⁻¹	4 400	4 320	3 280	460	460	330
Signal events	22 000	86 400	327 900	45 500	114 000	810 000
Total events in analysis	130 000	550 000	1 874 000	284 000	758 000	6 461 000
MC $\sigma(\phi_s)$ (stat.), rad	0.25	0.12	0.054	0.10	0.064	0.022

Results from toy MC study, based on 2011 and 2012 data

Harder p_T implies sizable reduction (x 10) on event yield

Two scenarios (6+6 vs 11+11) studied for RUN2, the second one is probably more realistic

Only statistical uncertainties

$B \rightarrow \mu\mu$: perspectives

 $B_s \rightarrow \mu\mu$ established by CMS+LHCb at 6.2 σ in RUNI

Confirmed by new LHCb data

To do:

- Bs lifetime & CPV
- Observe $B_d \rightarrow \mu\mu$:

need full HLLHC data set

B->μμ at CMS : hypotesys

Reach computed including sensible assumptions fo systematic uncertainties Trigger:

• L1 track-Trigger allows same L1 thresholds as now (p $_{_{\rm T}}(\mu) > 3$ GeV)

Efficiency:

- − pileup : ε(μμ) ↓ 30% (isolation)
- μ reco & trigger : ε(μμ) ◆ 2 x 5%

$\sigma(syst)$:

- $f_s/f_u: 5\% \text{ (now)} \rightarrow 3\%$
- Normalization $(B^+ \rightarrow \psi K^+)$: 3% (BR) \oplus 5% / $\sqrt{\mathcal{L}_{\text{INIT}}}$ /20 fb^{-1 (Rate)}
- Peaking Backround: $10\%^{(BR)} \oplus 50\% / \sqrt{L_{INT}/20 \text{ fb}^{-1} \text{ (Control Sample)}}$
- Semileptonic Background : $20\%^{(BR)} \oplus 50\% / \sqrt{L_{_{\rm INT}}}/20~{\rm fb^{-1}}$ (Control Sample)

Resolution:

- ↓ 1.6 (Barrell) ↓ 1.2 (Forward)
- ignore improvement due to 1st pixel layer

B–>μμ : expectations from CMS

L (fb ⁻¹)	No. of B _s ⁰	No. of B ⁰	$\delta \mathcal{B}/\mathcal{B}(B_s^0 \to \mu^+\mu^-)$	$\delta \mathcal{B}/\mathcal{B}(B^0 \to \mu^+\mu^-)$	B ⁰ sign.	$\delta \frac{\mathcal{B}(B^0 o \mu^+ \mu^-)}{\mathcal{B}(B^0_S o \mu^+ \mu^-)}$
20	16.5	2.0	35%	>100%	0.0 – 1.5σ	>100%
100	144	18	15%	66%	0.5 – 2.4σ	71%
300	433	54	12%	45%	1.3–3.3 σ	47%
3000	2096	256	12%	18%	5.4 – 7.6σ	21%

- 3000 fb-1 : statistic is not an issue
- Use just barrel events, resolution good enough to separate $B_d/B_s/B \rightarrow hh'$

$$\mathcal{B}r(B_d) > 5\sigma \text{ (if SM, CMS only)}$$

$B_s \rightarrow \Phi\Phi$: a test case for L1 track trigger (CMS)

Rare penguin decay, not covered by existing triggers (ATLAS and CMS)

Bench mark for L1 Track trigger:

- $-p_{T}(K) > 2 \text{ GeV (close to threshold)}$
- topological cuts : ΔR , M(KK), M($\Phi\Phi$)

Completed by offline analysis

Compare different pileup, different set of cuts

Very preliminary study to compute

- signal efficiency
- trigger rates

$B \rightarrow \Phi \Phi : CMS$ expectations

Baseline	Efficie	ncy (%)	Rate (kHz)			
Daseillie	L1	Offline	<PU $> = 70$	<PU $>$ = 140	<PU $>$ = 200	
Loose	41.6 ± 1.2	61.5 ± 1.3	6.3 ± 1.5	27.9 ± 1.7	61.8 ± 5.2	
Medium	36.6 ± 1.1	55.3 ± 1.2	2.5 ± 0.9	13.3 ± 1.2	29.6 ± 3.6	
Tight	31.1 ± 1.0	55.1 ± 1.2	1.4 ± 0.7	5.1 ± 0.7	12.2 ± 2.3	

Conclusions:

- Signal efficiency satisfactory
- HLT rate still to large, further cuts needed

$\overline{\text{Top FCNC}: t-} > H/Z/\gamma q$

Marcus' talk :

- SM expects Br 10⁻¹⁴ 10⁻¹⁷
- New Physics: up to 10⁻⁴

- Present limits:

$$\simeq o(10^{-4})$$
 (Zq)

$$\simeq o(10^{-3})$$
 (Hq)

Process	SM	$2\mathrm{HDM}(\mathrm{FV})$	$2\mathrm{HDM}(\mathrm{FC})$	MSSM	RPV	RS
$t \to Zu$	7×10^{-17}	-	-	$\leq 10^{-7}$	$\leq 10^{-6}$	-
$t \to Zc$	1×10^{-14}	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$
$t \to gu$	4×10^{-14}		_	$\leq 10^{-7}$	$\leq 10^{-6}$	-
$t \to gc$	5×10^{-12} ($\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-10}$
$t \to \gamma u$	4×10^{-16}		-	$\leq 10^{-8}$	$\leq 10^{-9}$	-
$t \to \gamma c$	5×10^{-14}	$\leq 10^{-7}$	$\leq 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\leq 10^{-9}$
$t \to hu$	2×10^{-17}	6×10^{-6}	_	$\leq 10^{-5}$	$\leq 10^{-9}$	
$t \to hc$	3×10^{-1}	2×10^{-3}	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$

arXiv:1311.2028 [hep-ph] (2013)

Top FCNC: $t\rightarrow H/Z/\gamma q$

Marcus' talk :

- SM expects Br 10⁻¹⁴ 10⁻¹⁷
- New Physics: up to 10⁻⁴
- Present limits:

$$\simeq o(10^{-4})$$
 (Zq)

$$\simeq o(10^{-3})$$
 (Hq)

Process	SM	$2\mathrm{HDM}(\mathrm{FV})$	$2\mathrm{HDM}(\mathrm{FC})$	MSSM	RPV	RS
$t \to Zu$	7×10^{-17}	-	-	$\leq 10^{-7}$	$\leq 10^{-6}$	-
$t\to Zc$	1×10^{-14}	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$
$t \to gu$	4×10^{-14}		_	$\leq 10^{-7}$	$\leq 10^{-6}$	-
$t \to gc$	5×10^{-12} ($\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-10}$
$t \to \gamma u$	4×10^{-16}		-	$\leq 10^{-8}$	$\leq 10^{-9}$	-
$t \to \gamma c$	5×10^{-14}	$\leq 10^{-7}$	$\leq 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\leq 10^{-9}$
$t \to hu$	2×10^{-17}	6×10^{-6}	_	$\leq 10^{-5}$	$\leq 10^{-9}$	
$t \to hc$	3×10^{-1}	2×10^{-3}	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$
	$\overline{}$					

arXiv:1311.2028 [hep-ph] (2013)

t->Zq,Hq in different scenarios for detector upgrade (reference/middle/low) and systematic uncertainties (negligible / improved / as now)

Top FCNC: $t \rightarrow H/Z/\gamma q$

Marcus' talk :

- SM expects Br 10⁻¹⁴ 10⁻¹⁷
- New Physics: up to 10⁻⁴
- Present limits:

$$\simeq o(10^{-4})$$
 (Zq)

$$\simeq o(10^{-3})$$
 (Hq)

Process	SM	$2\mathrm{HDM}(\mathrm{FV})$	$2\mathrm{HDM}(\mathrm{FC})$	MSSM	RPV	RS
$t \to Zu$	7×10^{-17}	-	-	$\leq 10^{-7}$	$\leq 10^{-6}$	_
$t\to Zc$	1×10^{-14}	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$
$t \to gu$	4×10^{-14}		_	$\leq 10^{-7}$	$\leq 10^{-6}$	-
t o gc	5×10^{-12} ($\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-10}$
$t \to \gamma u$	4×10^{-16}		-	$\leq 10^{-8}$	$\leq 10^{-9}$	-
$t \to \gamma c$	5×10^{-14}	$\leq 10^{-7}$	$\leq 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\leq 10^{-9}$
$t \to hu$	2×10^{-17}	6×10^{-6}	_	$\leq 10^{-5}$	$\leq 10^{-9}$	
$t \to hc$	3×10^{-1}	2×10^{-3}	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$

arXiv:1311.2028 [hep-ph] (2013)

t->Zq,Hq in different scenarios for detector upgrade (reference/middle/low) and systematic uncertainties

 $t \rightarrow \gamma q$ extrapolated from 8 TeV analysis, (not optimized for 14 TeV)

ATLAS: top FCNC

$$t \rightarrow Zq \rightarrow 3\ell X$$

$$\chi^2 = \frac{\left(m_Z - m_{\ell_1 \ell_2}^{\text{reco}}\right)^2}{\sigma_Z^2} + \frac{\left(m_W - m_{\ell_3 \nu}^{\text{reco}}\right)^2}{\sigma_W^2} + \frac{\left(m_t - m_{\ell_3 \nu j_b}^{\text{reco}}\right)^2}{\sigma_{t \to Wb}^2} + \frac{\left(m_t - m_{\ell_1 \ell_2 j_u}^{\text{reco}}\right)^2}{\sigma_{t \to Zq}^2}.$$

	"γ" <i>t</i> →Z <i>u</i>	"\sigma" t→Zu	"γ" <i>t</i> →Z <i>c</i>	"\sigma" t→Zc	" γ " t → Zu + Zc	"σ" t → Zu + Zc
Middle	$4.5 \cdot 10^{-5}$	$4.3 \cdot 10^{-5}$ $4.6 \cdot 10^{-5}$ $5.2 \cdot 10^{-5}$	$6.0 \cdot 10^{-5}$	$6.3 \cdot 10^{-5}$	$2.4 \cdot 10^{-5}$ $2.6 \cdot 10^{-5}$ $2.9 \cdot 10^{-5}$	$2.5 \cdot 10^{-5}$ $2.7 \cdot 10^{-5}$ $3.0 \cdot 10^{-5}$

Sensitivity increase by 2 to 6 depending on scenario

$$t \rightarrow H(b\overline{b})q$$

MVA optimized for different topologies (2/3 b, N(jets))

Layout	Set	t→Hu	$t\rightarrow Hc$	$t\rightarrow Hu+Hc$
Reference	A B	$\begin{array}{ c c c c c } 2.4 \cdot 10^{-4} \\ 2.4 \cdot 10^{-4} \end{array}$	$2.0 \cdot 10^{-4} \\ 2.0 \cdot 10^{-4}$	$1.1 \cdot 10^{-4} \\ 1.1 \cdot 10^{-4}$
Middle	A B	$\begin{array}{ c c c c c } 2.9 \cdot 10^{-4} \\ 2.9 \cdot 10^{-4} \end{array}$	$2.4 \cdot 10^{-4} \\ 2.4 \cdot 10^{-4}$	$1.3 \cdot 10^{-4} \\ 1.3 \cdot 10^{-4}$
Low	A B	$\begin{array}{ c c c c c }\hline 3.5 \cdot 10^{-4} \\ 3.5 \cdot 10^{-4} \\ \hline \end{array}$	3.0 · 10 ⁻⁴ 3.0 · 10 ⁻⁴	$1.7 \cdot 10^{-4} \\ 1.7 \cdot 10^{-4}$

Sensitivity increase by up to 20

t -> c/u γ FCNC @ CMS

Similar selection as per 8 TeV search with

- same $\sigma(syst)$
- improved $\sigma(syst)$

Results (200 pilep with new detector configuration)

	19.7 fb ⁻¹ at 8 TeV	3 ab ⁻¹ at 14 TeV (Scenario 1)	3 ab ⁻¹ at 14 TeV (Scenario 2)
$B(t\rightarrow u+\gamma)$	1.7×10^{-4}	4.6×10^{-5}	2.7×10^{-5}
$B(t\rightarrow c+\gamma)$	2.2×10^{-3}	3.4×10^{-4}	2.0×10^{-4}

Sensitivity increase by 3 to 10

Conclusions

HL-LHC rises a hard challenge to ATLAS and CMS

Collaborations turn the challenge into an opportunity by:

- developing innovative detectors (here focus on tracker devices)
- upgrading aged electronics to state of art
- overall improving the detector performance

New detector performances extensively tested at simulation level for

- searches / high p_T SM measurements / flavor

Despite the diffcult experimental conditions, sizable progress is expected

Actual results depend on many unknowns

- evolution of systematic uncertainties
- actual configuration of to-come detectors

Backup

Top FCNC: scenarios

CMS

- Consider two scenarios for systematics
 - o 1) No change w.r.t public 8 TeV
 - 2) Based on estimates/studies for an improvement with Phase II detector / statistics

ATLAS

SetA

- 2% lumi
- 6% WZ and signal
- 62% Z+jets, tt̄
- 50% tZ, tWZ
- 30% tt̄V

SetB

- 2% lumi
- 6% WZ and signal
- 30% Z+jets, tt
- 10% tZ, tWZ
- 6% t̄tV