PHENIX results on the Lévy analysis of Bose-Einstein correlation functions BGL 17 – 10th Bolyai-Gauss-Lobachevsky Conference

Máté Csanád for the PHENIX Collaboration

Eötvös University, Budapest, Hungary

Outline

- Bose-Einstein correlations
- 3 Lévy-type HBT and the critical point
 - 4 PHENIX Lévy HBT results: $\sqrt{s_{NN}} =$ 200 GeV, MinBias

BEC

Lévy HBT

PHENIX result

Summary

The PHENIX Experiment

- Versatile detector, operating until 2016
- Tracking via Drift Chambers and Pad Chambers
- \blacktriangleright Charged pion ID with TOF, from \sim 0.2 to 2 GeV/c
- This analysis: PID also with EMCal

Lévy HBT

PHENIX result

The PHENIX Experiment

- Versatile detector, operating until 2016
- Tracking via Drift Chambers and Pad Chambers
- \blacktriangleright Charged pion ID with TOF, from \sim 0.2 to 2 GeV/c
- ▶ This analysis: PID also with EMCal

PHENIX BEC Lévy HBT PHENIX results Su	
---------------------------------------	--

PHENIX runs at a glance

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
510.0												0	0			
500.0									0		0					
200.0		$\circ\circ$	00	00	ullet	0	\bigcirc	ullet	0	\bigcirc	0	000		$\bigcirc \bigcirc$		$\circ\circ$
130.0	0															
62.4				0		0				0						\bigcirc
39.0										0						\bigcirc
27.0											0					
22.5																\bigcirc
19.6		0									0					
14.6														0		
11.5										\bigcirc						
7.7										0						
5.0								0								
<u>О</u> р+	○ p+p ○ Au+Au ○ d+Au ● Cu+Cu ○ U+U ● Cu+Au ● He+Au ● p+Al See details at <u>http://www.rhichome.bnl.gov/RHIC/Runs/</u>															
M. Csanád for PHENIX BGL17												4				

Outline

- 2 Bose-Einstein correlations
- 3 Lévy-type HBT and the critical point
 - 4 PHENIX Lévy HBT results: $\sqrt{s_{NN}} =$ 200 GeV, MinBias

PHENIX BEC Lévy HBT PHENIX results S

Bose-Einstein correlations in heavy ion physics

- Quantum statistics connects spatial and momentum space distributions
- ▶ Spatial source S(x) versus momentum correlation function $C_2(q)$:

$$\mathcal{C}_2(q)\simeq 1+\left|\widetilde{S}(q)/\widetilde{S}(0)
ight|^2,\,\,\widetilde{S}(q)=\int S(x)e^{iqx}d^4x,\,\,q=p_1-p_2$$

- Final state interactions distort the simple Bose-Einstein picture
- Coulomb interaction important, handled via two-particle wave function
- Resonance pions: Halo around primordial Core

Bolz et al, Phys.Rev. D47 (1993) 3860-3870; Csörgő, Lörstad, Zimányi, Z.Phys. C71 (1996) 491-497

The out-side-long system, HBT radii

- \triangleright C(q) usually measured in the Bertsch-Pratt pair coordinate-system
 - out: direction of the average transverse momentum (K_t)
 - long: beam direction
 - side: orthogonal to the latter two
- ► *R_{out}*, *R_{side}*, *R_{long}*: HBT radii
- Out-side difference $\rightarrow \Delta \tau$ emission duration
- From a simple hydro calculation:

$$R_{out}^{2} = \frac{R^{2}}{1 + u_{T}^{2}m_{T}/T_{0}} + \beta_{T}^{2}\Delta\tau^{2}$$
$$R_{side}^{2} = \frac{R^{2}}{1 + u_{T}^{2}m_{T}/T_{0}}$$

- \blacktriangleright RHIC: ratio is near one \rightarrow no strong 1^{st} order phase transition
- Plus lots of other details (pre-eq flow, initial state, EoS, ...)
- S. Chapman, P. Scotto, U. Heinz, Phys.Rev.Lett. 74 (1995) 4400
- T. Csörgő and B. Lörstad, Phys.Rev. C54 (1996) 1390
- S. Pratt, Nucl.Phys. A830 (2009) 51C

PHENIX BEC Lévy HBT PHENIX results

Example: recent PHENIX HBT measurements

- ▶ Corr. func. in Bertsch-Pratt system, radii from Gaussian fit
- Linear $1/\sqrt{m_T}$ scaling of HBT radii for all systems and energies
- Interpolation to common m_T , PHENIX and STAR consistent

PHENIX Collaboration, arXiv:1410.2559; STAR Collaboration, arXiv:1403.4972

HBT radii and the search for the critical endpoint

- Signals of QCD CEP: softest point, long emission
- $R_o^2 R_s^2$: related to emission duration
- $(R_s \sqrt{2} \cdot \overline{R})/R_l$: related to expansion velocity
- Non-monotonic patterns
- Indication of the CEP?
- Further detailed studies done Roy Lacey, arXiv:1606.08071 & arXiv:1411.7931 (PRL114)
- Maybe Levy exponent α gives further insight?

Outline

- Bose-Einstein correlations
- Iévy-type HBT and the critical point
 - 4) PHENIX Lévy HBT results: $\sqrt{s_{NN}}=$ 200 GeV, MinBias

Lévy distributions in heavy ion physics

Expanding medium, increasing mean free path: anomalous diffusion

Metzler, Klafter, Physics Reports 339 (2000) 1-77, Csanád, Csörgő, Nagy, Braz.J.Phys. 37 (2007) 1002

- Lévy-stable distribution: $\mathcal{L}(\alpha, R, r) = \frac{1}{(2\pi)^3} \int d^3q e^{iqr} e^{-\frac{1}{2}|qR|^{\alpha}}$
 - ▶ Generalized Gaussian from generalized central limit theorem
 - $\alpha = 2$ Gaussian, $\alpha = 1$ Cauchy
- Shape of the correlation functions with Levy source:

$$\mathcal{C}_2(q) = 1 + \lambda \cdot e^{-(\mathcal{R}q)^lpha}$$
 $lpha = 2$: Gaussian $lpha = 1$: Exponential

- Critical behaviour \rightarrow described by critical exponents
- ▶ Spatial corr. $\propto r^{-(d-2+\eta)} \rightarrow \text{defines } \eta \text{ exponent}$
- Symmetric stable distributions (Levy) \rightarrow spatial corr. $\propto r^{-1-\alpha}$
- α associated to critical exponent η

Csörgő, Hegyi, Zajc, Eur.Phys.J. C36 (2004) 67, nucl-th/0310042 $\,$

A possible way of finding the critical point

• QCD universality class \leftrightarrow 3D Ising

- Halasz et al., Phys.Rev.D58 (1998) 096007
- Stephanov et al., Phys.Rev.Lett.81 (1998) 4816
- At the critical point:
 - random field 3D Ising: η = 0.50 ± 0.05
 Rieger, Phys.Rev.B52 (1995) 6659
 - 3D Ising: $\eta = 0.03631(3)$

El-Showk et al., J.Stat.Phys.157 (4-5): 869

- Modulo finite size effects
- Distance from the critical point?
- Motivation for precise Levy HBT!
- Change in $\alpha_{\text{Levy}} \leftrightarrow \text{proximity of CEP}$?
- ► Non-static system, finite size effects...

Outline

- The PHENIX experiment
- 2 Bose-Einstein correlations
- 3 Lévy-type HBT and the critical point
- **OVER IDENTIAL SET UP:** PHENIX Lévy HBT results: $\sqrt{s_{NN}} = 200$ GeV, MinBias
 - 5 Summary

PHENIX Lévy HBT analysis

- Dataset used for the analysis:
 - ▶ Run-10, Au+Au, $\sqrt{s_{NN}} = 200$ GeV, 7.3·10⁹ events
 - Additional offline requirements:
 - Collision vertex position less than ± 30 cm
 - Particle identification:
 - ▶ time-of-flight data from PbSc e/w, TOF e/w, momentum, flight length
 - 2 σ cuts on m^2 distribution
 - ▶ Correlation variable $|k|_{LCMS}$: $|\mathbf{p}_1 \mathbf{p}_2|$ in longitudinally comoving frame
 - Single track cuts:
 - 2σ matching cuts in TOF & PbSc for pions
 - Pair-cuts:
 - A random member of pairs assoc. with hits on same tower were removed
 - $\blacktriangleright\,$ customary shaped cuts on $\Delta \varphi \Delta z$ plane for PbSc e/w, TOF e/w
- ▶ 1D corr. func. as a function of $|k|_{LCMS}$ in various m_T bins
 - Levy fits for 31 m_T bins (m_T in [0.228, 0.871] GeV/ c^2)
 - Coulomb effect incorporated in fit function

Example $C(|k|_{LCMS})$ measurement result

Measured in 31 $m_T^2 = m^2 + p_T^2$ bins for $\pi^+\pi^+$ and $\pi^-\pi^-$ pairs

M. Csanád for PHENIX

Example $C(|k|_{LCMS})$ measurement result

Measured in 31 $m_T^2 = m^2 + p_T^2$ bins for $\pi^+\pi^+$ and $\pi^-\pi^-$ pairs

Physical parameters: R, λ, α ; measured versus pair m_T

Lévy HBT

PHENIX results

Levy scale parameter R

- Similar decreasing trend as Gaussian HBT radii
- Hydro predicts $1/R_{Gauss}^2 = a + bm_T$
- Hydro behaviour not invalid for R_{Levy}!
- The linear scaling of $1/R^2$, breaks for high m_T

Lévy HBT

PHENIX results

Correlation strength λ

- From the Core-Halo model: $\lambda = \left(\frac{N_C}{N_C + N_H}\right)^2$
- Observed decrease ("hole") at small $m_T \rightarrow$ increase of halo fraction
- Different effects can cause change in λ
 - Resonance effects, partially coherent pion production
- $\lambda/\lambda_{\rm max}$ with smaller systematic uncertainties
- Precise measurement may help extract physics info

BEC

Lévy HBT

PHENIX results

Summary

A possible (?) interpretation of $\lambda(m_T)$

• $\lambda(m_T)$ measures core/(core+halo) fraction

- May be connected to mass modifications (c.f. chiral restoration)
 - \blacktriangleright Decreased $\eta' \; {\rm mass} \rightarrow \eta' \; {\rm enhancement} \rightarrow {\rm halo} \; {\rm enhancement}$
 - Kinematics: η' decay pions will have low $m_T \rightarrow$ decreased λ at small m_T
- Incompatibility with unmodified in-medium η' mass? Kapusta, Kharzeev, McLerran, Phys.Rev. D53 (1996) 5028, hep-ph/9507343 Vance, Csörgő, Kharzeev, Phys.Rev.Lett. 81 (1998) 2205, nucl-th/9802074 Csörgő, Vértesi, Sziklai, Phys.Rev.Lett. 105 (2010) 182301, arXiv:0912.5526

A possible (?) interpretation of $\lambda(m_T)$

- $\lambda(m_T)$ measures core/(core+halo) fraction
- May be connected to mass modifications (c.f. chiral restoration)
 - \blacktriangleright Decreased $\eta' \mbox{ mass } \rightarrow \eta' \mbox{ enhancement } \rightarrow \mbox{ halo enhancement }$
 - Kinematics: η' decay pions will have low $m_{\mathcal{T}} \rightarrow$ decreased λ at small $m_{\mathcal{T}}$
- Incompatibility with unmodified in-medium η' mass? Kapusta, Kharzeev, McLerran, Phys.Rev. D53 (1996) 5028, hep-ph/9507343 Vance, Csörgő, Kharzeev, Phys.Rev.Lett. 81 (1998) 2205, nucl-th/9802074 Csörgő, Vértesi, Sziklai, Phys.Rev.Lett. 105 (2010) 182301, arXiv:0912.5526

BEC

Lévy HBT

PHENIX results

Levy exponent α

- Measured values far from Gaussian ($\alpha = 2$), also not expo. ($\alpha = 1$)
- Also far from the random field 3D Ising value at CEP ($\alpha = 0.5$)
- More or less constant (at least within systematic errors)
- \blacktriangleright Motivation to do fits with fixed $\alpha=1.134$
- Note: $\alpha(m_T) = \text{const.}$ fit statistically not acceptable (only with syst.)

Levy scale parameter R with fixed $\alpha = 1.134$

- More smooth trend
- Remarkable linearity of $1/R^2$
- Hydro behavior valid, despite $\alpha < 2$

Levy scale parameter R with fixed $\alpha = 1.134$

- More smooth trend
- Remarkable linearity of $1/R^2$
- Hydro behavior valid, despite $\alpha < 2$

Newly discovered scaling parameter \widehat{R}

BEC

Lévy HBT

PHENIX results

Summary

Newly discovered scaling parameter \widehat{R}

Newly discovered scaling parameter \widehat{R}

- Empirically found scaling parameter
- Linear in m_T
- ► Physical interpretation \rightarrow open question M. Csanad for PHENIX BGL17

Outline

- The PHENIX experiment
- 2 Bose-Einstein correlations
- 3 Lévy-type HBT and the critical point
- 4 PHENIX Lévy HBT results: $\sqrt{s_{NN}} = 200$ GeV, MinBias

- ▶ B-E correlation functions, run-10 200 GeV Au+Au, \sim 7 billion evts.
- Levy fits yield statistically acceptable description
- Fine m_T binned Levy source parameters (R, λ , α)
 - Nearly constant α , away from 2, 1 and 0.5 \leftrightarrow distance to CEP?
 - Linear scaling of $1/R^2(m_T) \leftrightarrow$ hydro?
 - Low- m_T decrease in $\lambda(m_T) \leftrightarrow$ resonances, η' in-medium mass?
- New empirically found scaling parameter $\widehat{R} = R/(\lambda \cdot (1 + \alpha))$

Thank you for your attention!

If you are interested in these subjects: come to the 17th Zimanyi-COST Winter School Budapest, Hungary, Dec. 4. - Dec. 8. 2017 http://zimanyischool.kfki.hu/17/

Run4 preliminary&Gauss → Run10 preliminary&Lévy

Correlation strength λ with fixed $\alpha = 1.134$

- More smooth trend
- Smaller systematic errors
- Saturation at large m_T
- Decrease ("hole") for smaller m_T values

Low energy comparison

STAR centrality dependent results (left) and the comparison of STAR results in different energye with NA44 data (right)

Lévy source function and kinematic variables

Basic two-particle variables

$$\mathcal{K}^{\mu} = rac{p_{1}^{\mu} + p_{2}^{\mu}}{2}, \qquad q^{\mu} = p_{1}^{\mu} - p_{2}^{\mu}, \qquad q_{inv} = \sqrt{-q^{\mu}q_{\mu}}$$
(1)

►
$$C_2(q_{inv})$$
 - Lorentz invariant 1 dimensional function
► $|k| = \frac{1}{2}\sqrt{q_{out}^2 + q_{side}^2 + q_{long}^2}$ instead of q_{inv} - better
► $C_2(|k|)$ - 1 dim. function

Anomalous diffusion, generalized central limit theorem: Levy

$$\mathcal{L}(\alpha, R, r) = \frac{1}{(2\pi)^3} \int d^3 q e^{iqr} e^{-\frac{1}{2}|qR|^{\alpha}}$$
⁽²⁾

$$S(r) = (1 - \sqrt{\lambda})\mathcal{L}(\alpha, R_H, r) + \sqrt{\lambda} \cdot \mathcal{L}(\alpha, R_C, r)$$
(3)

► Shape of the correlation functions with Levy source $(R_H \to \infty)$: $C_2(|k|) = 1 + \lambda \cdot e^{-(2R|k|)^{\alpha}}$ (4)

Lévy exponent α at 200 GeV

- Slightly non-monotonic behavior as a function of m_T
- Average $\langle \alpha \rangle$ non-monotonic behavior versus $\textit{N}_{
 m part}$
- $\alpha = \langle \alpha \rangle$ constant fits were performed

Lévy exponent α at 62 and 39 GeV

- Lévy exponent α : no significant change vs $\sqrt{s_{NN}}$ at 39-62-200 GeV
- Usual values between 1 and 1.5
- Non-monotonicity in m_T

Lévy scale R: similar trends for all $\sqrt{s_{NN}}$ and cent.

"Hole" in λ : all energies and centralities

\hat{R} scaling for all energies & centralities

