PHENIX results on centrality and beam energy dependent Levy HBT analysis

Sándor Lökös for the PHENIX collaboration

Eötvös University, Budapest and EFOP-3.6.1-16-2016-00001, Gyöngyös

BGL 2017 Gyöngyös, Hungary

Sándor Lökös for the PHENIX collaboration PHENIX results on centrality and beam energy dependent Levy HBT analysis 1 / 20

Outline

- The PHENIX experiment
- Bose-Einstein correlations
- Lévy-type distributions and the critical point
- Centrality dependent results at $\sqrt{s_{NN}}$ = 200 GeV, 62 GeV and 39 GeV
- Summary

PHENIX experiment

- Observing collision of p+p, p+Al, p+Au, d+Au, h+Au, Cu+Cu, Cu+Au, Au+Au, U+U
- Charged pion ID from \sim 0.2 to 2 GeV
- Typical Au+Au: $\sqrt{s_{NN}} = 130 \text{ GeV}$, 200 GeV
- Beam energy scan program: 62.4, 39.0, 27.0, 19.6, 14.5, 7.7 GeV

Sándor Lökös for the PHENIX collaboration PHENIX results on centrality and beam energy dependent Levy HBT analysis 3 / 20

Beam Energy Scan program

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
510.0												0	0			
500.0									0		0					
200.0		00	00	00	•0	0	0	•0	0	0	0	$\bigcirc\bigcirc\bigcirc$		$\bigcirc \bigcirc$		$\circ\circ$
130.0	0															
62.4				0		0				0						0
39.0										0						igodot
27.0											0					
22.5					٠											\bigcirc
19.6		0									0					
14.6														0		
11.5										0						
7.7										0						
5.0								0								
Ор+	-р 😑	Au+A	Au 🔾 See d	d+Aı etails	u 🌒 (at <u>ht</u>	Cu+Cı tp://\	u O www.	U+U <mark>rhich</mark>	• C ome.	u+Au bnl.g	ov/R	He+Au HIC/Ru	• Ins/	p+A	u 🔵 p)+Al

Sándor Lökös for the PHENIX collaboration PHENIX results on centrality and beam energy dependent Levy HBT analysis 4 / 20

Bose-Einstein correlations

Correlation function from one- and two-particle invariant momentum distributions:

$$C_2(p_1, p_2) = \frac{N_2(p_1, p_2)}{N_1(p_1)N_2(p_2)}$$

- $N_1(p)$ norm., $N_2(p_1, p_2) = \int S(x_1, p_1) S(x_2, p_2) |\Psi_2(x_1, x_2)|^2 d^4 x_1 d^4 x_2$
- S(x, p) usually assumed Gaussian \rightarrow we assumed it Lévy
- Ψ_2 interaction free case $|\Psi_2|^2 = 1 + \cos(qx)$
- Introducing $q = p_1 p_2$ and $K = (p_1 + p_2)/2$
- If $k_1 \approx k_2 \rightarrow$ inverse Fourier-trf of the S source function

$$C_2(q,K) = 1 + rac{| ilde{S}(q,K)|^2}{| ilde{S}(q=0,K)|^2}$$

Effects on correlation functions

Several effect could modify the correlation functions

- Like-charged pions \rightarrow Coulomb corr. needed: $C_{B-E} = K(q) \cdot C_m(q)$
- Strong final state interaction
- Effect of the resonance pions → core-halo model:
 - Split the source into two part: $S = S_{core} + S_{halo}$
 - Long-lived resonances contribute to the halo
 - In-medium η' mass modification \rightarrow specific, m_T dependent suppression
- Partial coherence (see the next presentation)
- Squeezed states
- Aharonov-Bohm-like effect
 - The hadron gas around the pair could reduce the strength of the correlation
 - Could be treated as an Aharonov-Bohm-like effect

Lévy-type distribution and the critical point

Generalized Gaussian – Lévy-distribution

-Anomalous diffusion -Generalized central limit th. $\mathcal{L}(\alpha, R, \mathbf{r}) = \frac{1}{(2\pi)^3} \int d^3q e^{i\mathbf{q}\mathbf{r}} e^{-\frac{1}{2}|\mathbf{q}R|^{\alpha}}$

- $\alpha = 2$ Gaussian, $\alpha = 1$ Cauchy, $0 < \alpha \le 2$ Lévy
- The C₂ from a symmetric Lévy-source:

 $C_2(Q) = 1 + \lambda \cdot e^{-(RQ)^{\alpha}}$

- Spatial corr. $\sim r^{-1-\eta}$ in 3D \rightarrow defines η exponent
- Symmetric stable distribution (Lévy) \rightarrow spatial corr. $\sim r^{-1-\alpha}$
- α identical to $\eta!$
- For details see e.g.:
 - [1] Csörgő, Hegyi, Zajc, Eur.Phys.J. C36 (2004) 67, nucl-th/0310042
 - [2] Csörgő, Hegyi, Novák, Zajc, AIP Conf.Proc. 828 (2006) 525, nucl-th/0512060
 - [3] Csörgő, PoS HIGH-pTLHC08:027 (2008), nucl-th/0903.0669
 - [4] Csanád, Csörgő, Nagy, Braz. J. Phys. 37 (2007) 1002-1013

Searching for the critical point

- QCD universality class ↔ 3D Ising [5],[6]
- At the critical point:
 - random field 3D Ising model [7]: $\eta = 0.5 \pm 0.05$
 - 3D Ising [8]: $\eta = 0.03631(3)$
- Change in $\alpha \rightarrow$ vicinity of the CEP
- Motivation for precise HBT measurements ..
 - ... with different multiplicity \rightarrow centrality dependence
 - ... with different energy: now 200 GeV, 62 GeV, 39 GeV
- [5] Halasz et al., Phys.Rev.D58 (1998) 096007, hep-ph/9804290
- [6] Stephanov et al., Phys.Rev.Lett.81 (1998) 4816, hep-ph/9806219
- [7] Rieger, Phys.Rev.B52 (1995) 6659, cond-mat/9503041
- [8] El-Showk et al., J.Stat.Phys.157 (4-5): 869, hep-th/1403.4545

Analysis details

• Data used for the centrality dependent analysis:

- Run-10, Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$
- 18 m_T bin, 6 cent.bin by 10% steps

Data used for the $\sqrt{s_{NN}}$ dependent analysis:

- Run-10, Au+Au at
 - $\sqrt{s_{\rm NN}} = 62$ GeV with 8 m_T bin, 4 cent.bin by 10% steps
 - $\sqrt{s_{\rm NN}} = 39$ GeV with 8 m_T bin, 2 cent.bin by 20% steps
- Yield the m_T and centrality dependence of the Lévy-parameters
- Estimate the systematical uncertainties (in progress):
 - Effect of single and pair cuts
 - Choice of PID arm (East or West)
 - Systematics from fit: choice of the Q_{\min} and Q_{\max}
 - In Coulomb correction $q_{\text{inv}} \leftrightarrow Q$ change

Example fit

- Fitted with Coulomb-corrected function
- All fits converged and the conf.levels are acceptable
- Lévy parameters are measured versus m_T

Sándor Lökös for the PHENIX collaboration PHENIX results on centrality and beam energy dependent Levy HBT analysis 10 / 20

Lévy exponent α at 200 GeV

- Slightly non-monotonic behavior as a function of m_T
- Average has non-monotonic behavior at 200 GeV
- $\alpha = \langle \alpha \rangle$ constant fits were performed with centrality bin dependent value

Sándor Lökös for the PHENIX collaboration PHENIX results on centrality and beam energy dependent Levy HBT analysis 11 / 20

Lévy exponent α at 62 and 39 GeV

- Lévy exponent α does not seem to depend on $\sqrt{s_{NN}}$
- Fewer centrality bins have to be used due to the statistics
- $\alpha = \langle \alpha \rangle$ constant fits were not done

Sándor Lökös for the PHENIX collaboration PHENIX results on centrality and beam energy dependent Levy HBT analysis 12 / 20

Lévy scale R at 200 GeV

- Not equivalent with the Gaussian width but show similar trends
- Linear scaling behavior is seen in $1/R^2(m_T)$
- α fix fits reduce the systematic uncertainties

Sándor Lökös for the PHENIX collaboration PHENIX results on centrality and beam energy dependent Levy HBT analysis 13 / 20

Lévy scale R at 62 and 39 GeV

- Similar decreasing trends with m_T as in the Gaussian case
- Similar trends as at 200 GeV
- Fewer centrality bins have to be used due to statistics

Sándor Lökös for the PHENIX collaboration PHENIX results on centrality and beam energy dependent Levy HBT analysis 14 / 20

Lévy strength λ at 200 GeV

- Decreasing tendency at lower m_T not depend on centrality (as in [9])
- Can be observed clearly in λ/λ_{max} with α fix (r.h.s. figure)
- Partial coherence predicts strong centrality dependence
- No centrality dependence of the "hole"

[9] Abelev et al. [STAR collaboration] PRC80, 024905

Sándor Lökös for the PHENIX collaboration PHENIX results on centrality and beam energy dependent Levy HBT analysis 15 / 20

Lévy strength λ at 62 and 39 GeV

- Similar trends as at 200 GeV
- The characteristics of the "hole" do not depend strongly on $\sqrt{s_{NN}}$
- At $\sqrt{s_{NN}} \approx 19.4$ GeV the effect seems to disappear in S+Pb (see [10])

[10] Beker et al. [NA44 collaboration], PRL74, 3340

Sándor Lökös for the PHENIX collaboration PHENIX results on centrality and beam energy dependent Levy HBT analysis 16 / 20

New scaling parameter \hat{R} at 200 GeV

- $\frac{1}{\hat{R}} = \frac{\lambda(1+\alpha)}{R}$ scales with m_T
- Not sensitive to the α fixation
- May correspond to the area under the correlation function
- Experimentally observed, no theoretical explanation as far as we know

Sándor Lökös for the PHENIX collaboration PHENIX results on centrality and beam energy dependent Levy HBT analysis 17 / 20

New scaling parameter \hat{R} at 62 and 39 GeV

- Surprisingly good behavior at lower energy
- Linear behavior does still hold

Sándor Lökös for the PHENIX collaboration PHENIX results on centrality and beam energy dependent Levy HBT analysis 18 / 20

Summary

- Experimentally, a significant deviation from the Gaussian ($\alpha = 2$) case
- Symmetric Lévy shape is a statistically acceptable description
- Lévy parameters connected to rescattering, core/halo model and size
- Lévy exponent α : non-monotonic in N_{part} , almost independent of $\sqrt{s_{NN}}$
- Lévy scale R: geometric/hydro scaling, similar to Gaussian
- Lévy strength: low- m_T "hole" for $\sqrt{s_{NN}} \ge 39$ GeV, weak centrality dep.
- New par \hat{R} : linear scaling for $\sqrt{s_{NN}} \ge 39$ GeV, all investigated centrality

Thank you for your attention!

Sándor Lökös for the PHENIX collaboration PHENIX results on centrality and beam energy dependent Levy HBT analysis 19 / 20

Backup slides

STAR centrality dependent results (left) and the comparison of STAR results in different $\sqrt{s_{NN}}$ with NA44 data (right)

Sándor Lökös for the PHENIX collaboration PHENIX results on centrality and beam energy dependent Levy HBT analysis 20 / 20