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Introduction - shockwaves

● Shockwaves are ubiquitous in physics and GR (general 
relativity) is no exception.

● More general case: boundary surfaces.
● Examples: Stellar collapse, stellar boundaries, impulsive 

electromagnetic or gravitational waves, supernovae, 
cosmological phase transitions.

● In all examples, a hypersurface partitions spacetime into two 
disjoint domains.



  

Introduction – junction conditions

● Physical conditions can be suitably different in the two 
domains.

● The local fields in each domain constitute a solution of the 
EFE.

● Conditions for the total spacetime to be a solution? → 
Junction conditions.

● Principal work by Lánczos, Darmois and Israel, modern 
formulation by Israel.



  

Introduction – junction conditions

● Analogous situation in Maxwell theory – the well-known 
jump conditions on the E, D, B and H fields:

● Unlike the relatively simple case in ED, the junction 
formalism in GR suffers from three complications.



  

Problem 1 – Matching spacetimes

● Unlike, for example, ED, in GR the spacetime manifolds 
themselves need to be matched, not just the field 
variables.

This is nontrivial and actually implies the “first” or 
“preliminary” junction condition:  



  

Problem 2 - Coordinates

● GR, like differential geometry, can and should be 
formulated in a coordinate-free manner.

● Because GR is physics, all things considered should be 
resolvable into “calculatable numbers” (a subset of reals), 
hence, coordinates are needed for direct computation.

● Coordinates are adapted to symmetry – which can differ in 
the two domains – the preferred coordinates might be 
discontinous.



  

Problem 2 - Coordinates

● Mismatching coordinates make comparison of tensor fields 
difficult – even smooth tensor fields appear discontinuous 
if different representations are compared.

● Therefore, expressing junction conditions with intrinsic 
hypersurface tensors (in intrinsic hypersurface 
coordinates) is recommended.



  

Problem 3 – Null surfaces

● Israel’s formalism works when the hypersurface is spacelike 
(sudden phase transitions) or timelike (stellar boundaries, et 
al).

● It doesn’t work when the surface is null/lightlike.
● The null case is of physical interest – electromagnetic and 

gravitational wave spacetimes.
● Generalization of Israel’s formalism by Barrabés and Israel.



  

Problem 3 – Null surfaces

● Normal vector is also tangential for null surfaces.
● Extrinsic curvature is no longer a carrier of transverse 

information.
● Induced metric is degenerate and a semi-Riemannian 

structure doesn’t exist.
● Generalization replaces the normal vector with transversal.
● Considerable gauge freedom – end result is invariant.



  

Introduction – Scalar-tensor theory

● Scalar-tensor theories are modified/extended theories of 
gravity (ETG).

● Why extend gravity? Answer: Dark energy and inflation 
models, Kaluza-Klein theory, low-energy limits of string 
theory compactifications.

● Scalar-tensor theory: In addition to the metric, a scalar 
field is also present as a configuration variable. 



  

Expectations from ETGs

● Solar system tests: GR is highly accurate on a Solar 
system scale – ETGs should give no different results.

● Ostrogradskij-instability: Lagrangian systems with higher 
than first derivatives tend to be unstable. Not all higher 
derivative theories are affected. If EOMs are second order, 
problems are avoided. ETGs should avoid Ostrogradskij 
instability.



  

Introduction – Scalar-tensor theory

● Origin: Kaluza-Klein theory, the metric function giving the 
size of the compactified dimension is a scalar w.r.t. 4D 
transformations.

● Horndeski theory – Discovered in 1974 by G.W. 
Horndeski, is the most general scalar-tensor theory in 4D 
with second order field equations.

● Rediscovered lately as a generalization of galileon theory.



  

Introduction – Scalar-tensor theory

● Horndeski contains 4 arbitrary (smooth) functions of the 
scalar field.

● Contains known scalar-tensor theories as subcases, such 
as Brans-Dicke theory, flat galileon theory, covariant 
galileon theory, k-essence etc.

● Studying Horndeski’s theory allows one to make sweeping 
statements about a very large family of ETGs.



  

Introduction – Horndeski theory

● Junction conditions for Horndeski has been found by 
Padilla & Sivanesan for the timelike/spacelike cases.

● This work aims to find junction conditions in the general 
case, including null surfaces.

● As a test case, we considered generalized Brans-Dicke 
theory instead of Horndeski, which is less general, but still 
allow for a considerable amount of cases.



  

Junction conditions in GR – 
Matching spacetimes
● Initial situation: We are given two spacetimes, M1 and M2 

with hypersurfaces Σ1 and Σ2. The hypersurfaces cut both 
manifolds into two subdomains, M1+, M1-, M2+ and M2-.

● We let                                              , and attempt to create a 
unified spacetime M, consisting of M+ and M- along a 
common boundary.

● Immediate requirement: existence of diffeomorphism
                    identifying the surfaces.



  

Junction conditions in GR – 
Matching spacetimes
● Glueing along the common hypersurface creates a 

topological manifold. This allows for the identification of the 
tangent spaces TxΣ2 and Ti(x)Σ1.

● To obtain a      structure on M, identification of the full 
tangent spaces of M+ and M- are needed. This process is 
more or less arbitrary. The      structure induces a unique
structure on M.



  

Junction conditions in GR – 
Matching spacetimes
● Clarke & Dray: If the induced metrics on Σ agree, then 

there is a unique      structure on M, in which the full metric 
is continuous across Σ.

● Proof is based on canonical forms of the metric (Gauss 
normal coordinates for timelike/spacelike surfaces).

● Continuity of the full metric carries no more information 
than the agreement of the induced metrics, as the full 
metric contains no more DoFs than the induced metrics.



  

Junction conditions in GR - 
Notation
● Let F be a physical quantity. The following notation is used:
●                                   - the “jump” of F;
●                                             - the “soldering” of F, where Θ 

is the Heaviside step function and φ is the function whose 
zeroes generate Σ.

● Distributionally                                                   , where



  

Junction conditions in GR - 
Methodology
● Assume that a coordinate system     is given which is 

smooth across Σ.
● Assume that the preliminary junction condition

holds.
● Express the metric as
● Calculate the EFE from this metric. If terms proportional to 

the delta function remain, the source must also be singular.   



  

Junction conditions in GR

● For timelike/spacelike hypersurfaces,

where                                                   .
● The equation for Sab is called Lánczos’ equation.

● If the EFE is to be regular, the extrinsic curvatures must 
agree. This condition is violated if an idealized thin layer of 
stress-energy is given on Σ. The Lánczos eq relates its 
SEM tensor to the jump in Kab.



  

Junction conditions in GR

● The equations                and

together provide the junction conditions .
● The junction conditions are expressed with the

hypersurface coordinates.



  

Junction conditions in GR – The 
general case
● Here we present a derivation of the general case.
● Because                 , the linear connexion can be 

expressed as                      .
● Let     be a transverse vector field to Σ, normalized as

                   .
● The jump             might be nonzero but must be directed 

normally:                            . This is because the 
discontinuity must be transversal:
and                         . 



  

Junction conditions in GR – The 
general case
● The jump in the linear connexion is then

● The form of the curvature tensor is

where

● Notation:



  

Junction conditions in GR – The 
general case
● The Einstein tensor is                                , where

and thus                      is the singular part of the SEM 
tensor.

● This SEM tensor is gauge-invariant and its contraction with 
the normal vanishes:               .



  

Junction conditions in GR – The 
general case
● Because Σ might be null, only the contravariant form of the 

distributional SEM tensor may be represented as intrinsic 
Σ-tensor as                      .

● This form is given by

where               ,                    and     is the dual frame to ea, 
satisfying                                .

● The SEM tensor is thus presented in intrinsic components. 
 



  

Generalized Brans-Dicke theory

● The action is given by
where Sm is the matter action (without scalar field) and 
SGBD is the generalized Brans-Dicke action.

●  

where                       is the kinetic term and F, B and G are 
arbitrary smooth functions of the scalar field Φ. 



  

Generalized Brans-Dicke theory

● Equations of motion are given by functional differentiation.
● The following notation is utilized:

● Then, the equations of motion are

● Let                                       and 



  

Generalized Brans-Dicke theory

● The concrete form of the EoMs are given by



  

Junction conditions in GBD theory

● We assume the scalar field is continuous: 
● First derivatives are normal directed:
● The form of second derivatives are
● The d’Alembertian of the scalar field is
● The jump of the kinetic term involves both zeta and the 

arithmetic mean of the values of the scalar field derivative. 
For this reason it shall be denoted simply by      .



  

Junction conditions in GBD theory

● For now we assume                   .
● The term         produces no delta function terms.
● The term         produces the delta function terms

● This expression is tangential and gives the intrinsic result



  

Junction conditions in GBD theory

● The next term is given by
● This is also tangential, intrinsic form is

● The first scalar term         is zero.
● The second scalar term is



  

Junction conditions in GBD theory

● The final scalar term is
● The junction conditions are given by

and                                .



  

Further research

● The                    condition was taken because otherwise 
the equations were not well defined. Why? Need to 
investigate.

● Padilla & Sivanesan derived equations from variational 
principle. Is it possible to do that in the general case?

● Investigation of analogues of Einstein frame, including 
disformal couplings.

● General matching conditions to be implemented in full 
Horndeski 
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