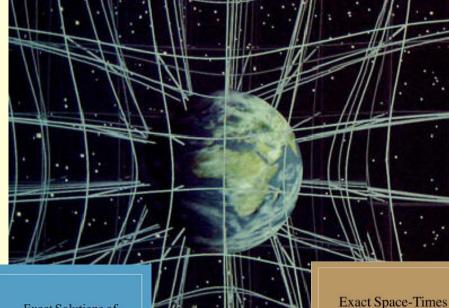


Precessing black hole binaries and their gravitational radiation

László Árpád GERGELY

Institute of Physics, University of Szeged

With


Márton Tápai, Zoltán Keresztes

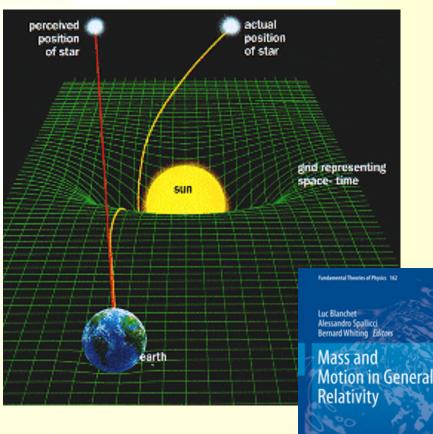
10th Bolyai-Gauss-Lobachevsky Conference, 2017, Eszterházy Károly University, Gyöngyös, Hungary

General relativity, the theory of gravitation

1. Matter tells space-time how to curve (Einstein equation)

$$R_{\mu\nu} - \frac{1}{2}R g_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

Exact Solutions of Einstein's Field Equations Second Edition


> HANS STEPHANI DIETRICH KRAMER MALCOLM MACCALLUM CORNELIUS HOENSELAERS EDUARD HERLT

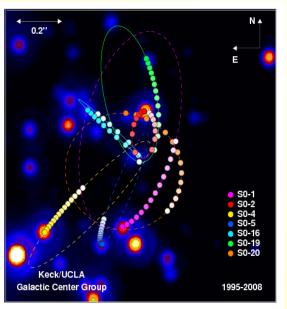
CAMBRIDGE MONOGRAPHS ON MATHEMATICAL PHYSICS Exact Space-Times in Einstein's General Relativity

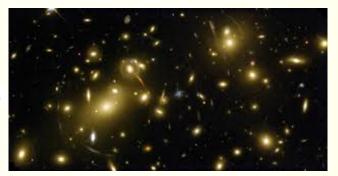
> JERRY B. GRIFFITHS JIŘÍ PODOLSKÝ

CAMBRIDGE MONOGRAPHS ON MATHEMATICAL PHYSICS 2. Space-time tells matter, how to move (geodetic equation)

$$\frac{d^2 x^{\mu}}{ds^2} = - \Gamma^{\mu}{}_{\alpha\beta} \frac{dx^{\alpha}}{ds} \frac{dx^{\beta}}{ds}$$

New effects, concepts

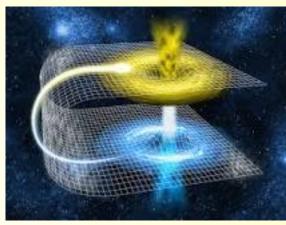

New (weak-field) effects in the Solar System:


- perihelion precession of Mercury
- gravitational light deflection (Solar Eclipse)
- gravitational redshift / time dilation (GPS)
- Shapiro-delay / radar echo delay

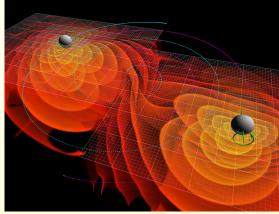
New concepts:

- black hole

from stellar evolution $M \le 20M_{\odot}$ intermediate mass $20M_{\odot} < M < 10^5 M_{\odot}$ supermassive



- gravitational (micro)lensing


LHC has not seen supersymmetry → dark matter is not WIMP MACHO observations (Large Magellanic cloud) → at most 10% of dark matter from stellar evolution

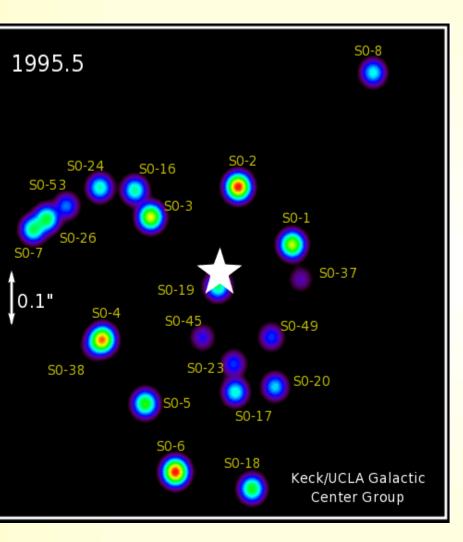
> → intermediate mass, primordial black holes account for dark matter?

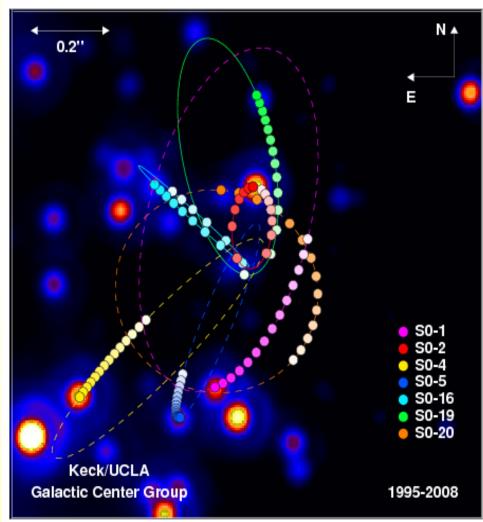
(need for a dedicated observation program)

- wormhole EP=EPR, relation to quantum field theories?

- gravitational radiation

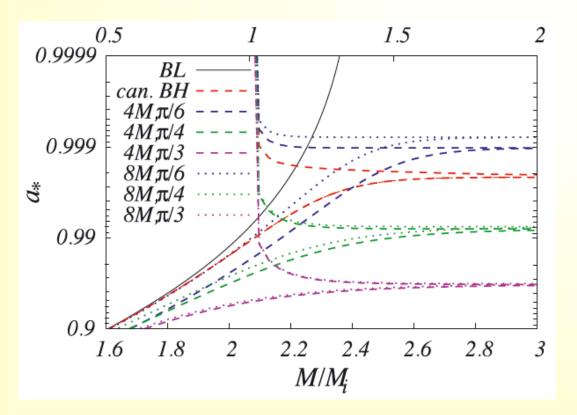
How do we see black holes?

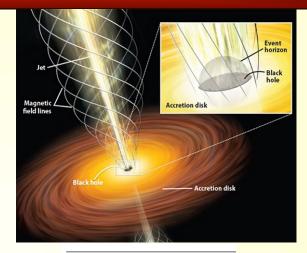

John Archibald Wheeler:



From the movie on gravitational waves, in preparation, by Boglárka H. Molnár

Stars orbiting the supermassive black hole in the center of the Milky Way



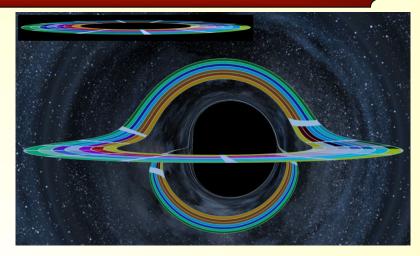

large curvature \rightarrow black hole

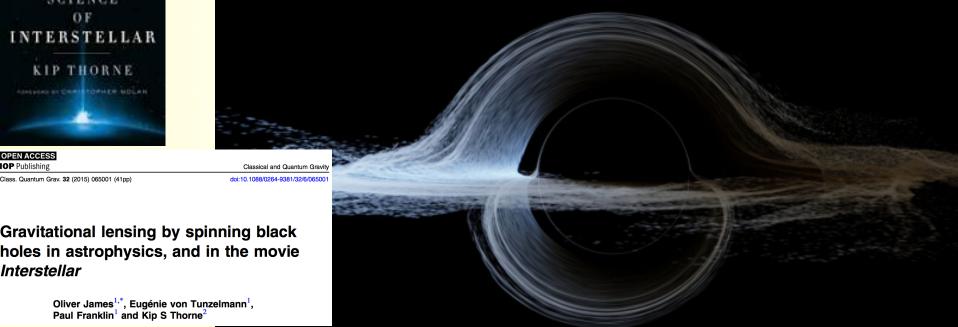
Accretion by black holes with disk and jet

Maximal spin and energy conversion efficiency in a symbiotic system of black hole, disc and jet Z. Kovács, L. Á. Gergely, P. L. Biermann, Mon. Not. R. Astron. Soc. **416**, 991–1009 (2011)

$\theta_{\rm max}$	п	<i>a</i> _* (I)	$\epsilon \ (\mathrm{I})$
$\pi/6$	1 2	0.8961 0.8901	0.309 0.301
	3	0.8803	0.285
$\pi/4$	1	0.8976	0.312
	2 3	0.8933 0.8872	0.306 0.298
$\pi/3$	1	0.8969	0.310
	2 3	0.8948 0.8924	0.308 0.305
$\pi/6$	1	0.8968	0.311
	2 3	0.8901 0.8822	0.302 0.291
$\pi/4$	1	0.8983	0.313
	2 3	0.8939 0.8879	0.308 0.300
$\pi/3$	1	0.8975	0.312
	2 3	0.8955 0.8931	0.311 0.307
	20		

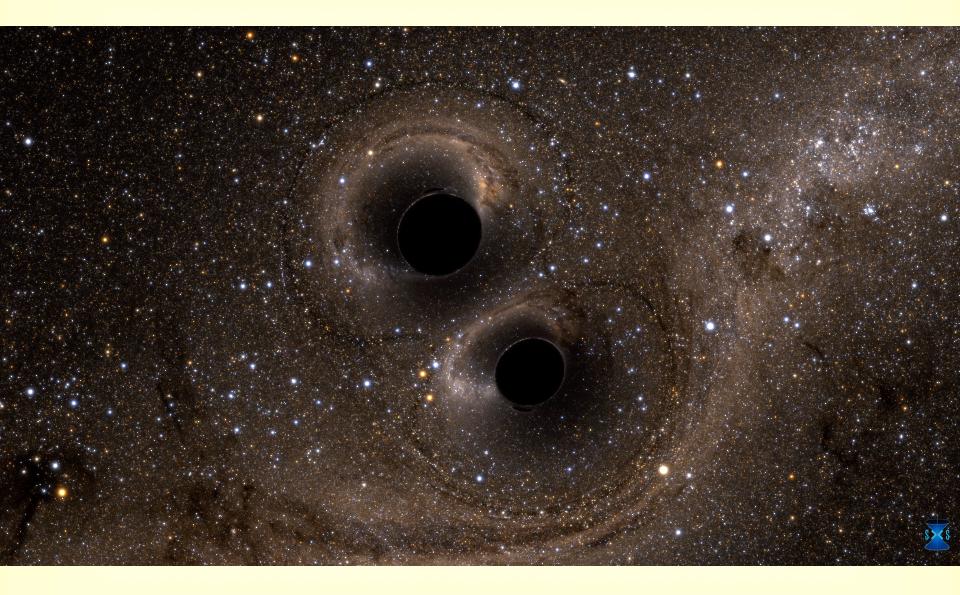
Gravitational lensing by a black hole

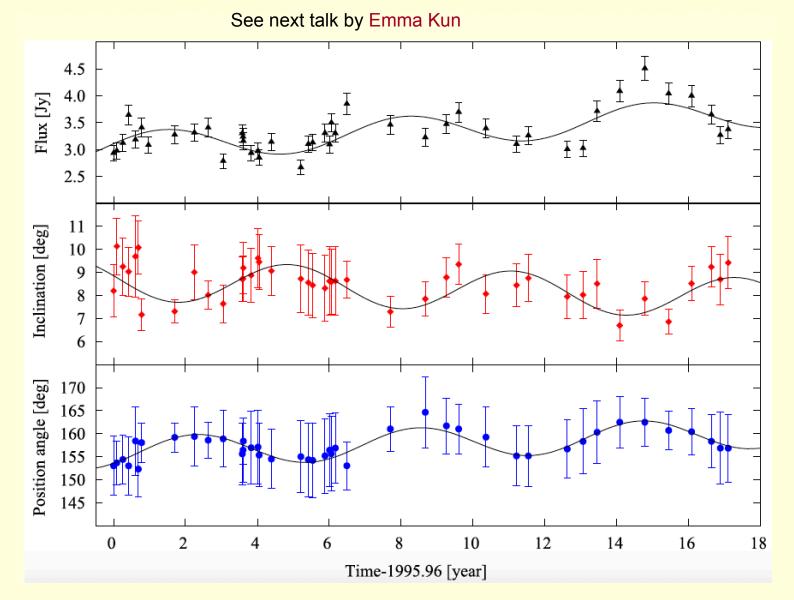



OPEN ACCESS IOP Publishing Class. Quantum Grav. 32 (2015) 065001 (41pp)

Interstellar

The black hole:


- Deflects the light from the accretion disk
- Provides two images of it •



Oliver James^{1,*}, Eugénie von Tunzelmann¹, Paul Franklin¹ and Kip S Thorne²

Gravitational lensing by a coalescing black hole binary

Electromagnetic signatures of coalescing black hole binaries in jets

A spinning supermassive black hole binary model consistent with VLBI observations of the S5 1928+738 jet E. Kun, K. É. Gabányi, M. Karouzos, S. Britzen, L. Á. Gergely, MNRAS 445, 1370–1382 (2014)

High-energy neutrinos from the aftermath of black hole binary coalescence

The neutrino emission is due to energetic proton–proton collisions, where the kinetic energy of the protons is above the energy threshold of pion-creation. See next talk by Emma Kun

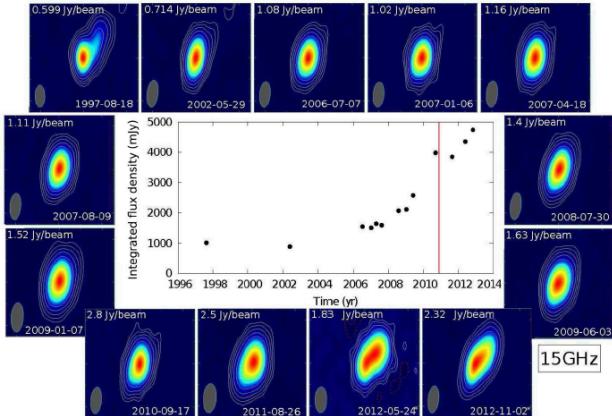


Figure 2. The radio maps of PKS 0723–008 over 12 epochs, represented on logarithmic scale with base 10. They were produced by processing the available VLBA visibilities provided by the MOJAVE team. Iso-flux density contours are in per cent of the peak flux density marked in the left upper corner of the maps. They increase by factors of 1, except the last two epochs (marked by stars), where the contours increase by factors of 2. In the middle, the integrated flux density of the source at 15 GHz is represented as a function of the time. The time of the corresponding neutrino detection (ID5) is indicated by a red vertical line.

A flat-spectrum candidate for a track-type high-energy neutrino emission event, the case of blazar PKS 0723–008 E. Kun, P. L. Biermann, L. Á. Gergely, MNRAS 466, L34–L38 (2017)

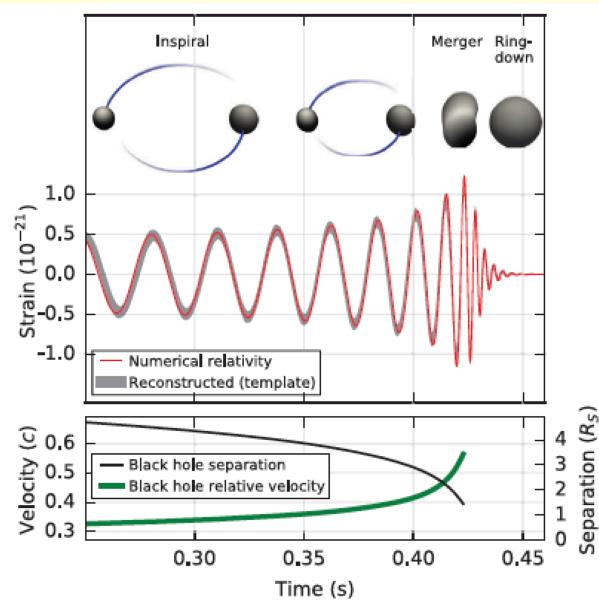
Gravitational radiation from a coalescing black hole binary

What happens when this gravitational radiation reaches the Earth?

Luckily there are no close coalescing black hole binary systems!!

The network of second generation interferometric gravitational wave detectors

Advanced LIGO, Hanford, USA, 4km Advanced LIGO, Livingston, USA, 4km Advanced Virgo, Cascina, Italy, 3km KAGRA, Kamioke, Japan, 3km Advanced LIGO KAGRA Advanced Virgo Early (2015-16, 40-80 Mpc) Opening (2018-19, 3-8 Mpc) Early (2017, 20-65 Mpc) Mid (2016-17, 80-120 Mpc) Early (2019-20, 8-25 Mpc) Mid (2018-19, 65-85 Mpc) Strain noise amplitude/ $H_{z}^{-1/2}$ -1/2Late (2018-19, 120-170 Mpc) Strain noise amplitude/ $Hz^{-1/2}$ Mid (2020-21, 25-40 Mpc) Late (2020-21, 65-115 Mpc) Design (2020, 190 Mpc) Late (2021 - 22, 40 - 140 Mpc)Design (2021, 125 Mpc) Strain noise amplitude/Hz⁻¹⁰⁻⁵¹ Strain $^{-51}$ BNS-optimized (210 Mpc) Design (2022, 140 Mpc) BNS-optimized (140 Mpc) 10^{-24} 10^{-24} 10^{-24} 10^1 10^{3} 10^{2} 10^{2} 10^{3} 10^{2} 10^{3} 10^{1} 10^{1} Frequency/Hz Frequency/Hz Frequency/Hz


Table 1 Plausible target detector sensitivities. The different phases match those in Figure 1. We quote the range, the average distance to which a signal could be detected, for a $1.4 M_{\odot} + 1.4 M_{\odot}$ binary neutron star (BNS) system and a $30M_{\odot} + 30M_{\odot}$ binary black hole (BBH) system.

	LIGO		Virgo		KAGRA	
	BNS	BBH	BNS	BBH	BNS	BBH
	range/Mpc	range/Mpc	range/Mpc	range/Mpc	range/Mpc	range/Mpc
Early	40 - 80	415-775	20-65	220-615	8-25	80-250
Mid	80 - 120	775 - 1110	65 - 85	615 - 790	25 - 40	250 - 405
Late	120 - 170	1110 - 1490	65 - 115	610 - 1030	40 - 140	405 - 1270
Design	190	1640	125	1130	140	1270

GW150914 GW151226 GW170104

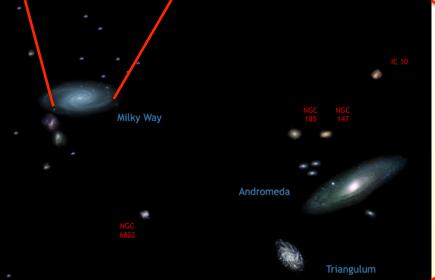
First direct detection of gravitational waves: GW150914

Phys. Rev. Lett. 116, 061102 (2016)

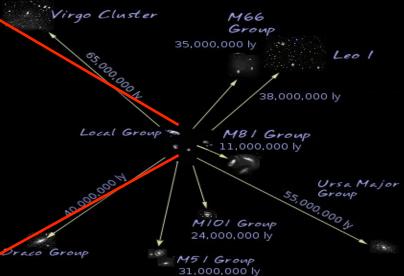
Coalescence of black holes of 29 and 36 solar masses \rightarrow over 05 sec the energy equivalent of 3 solar masses was emitted in the form of gravitational waves = The energy production of the Paks Nuclear Plant over 10³¹ years !

Due to the large distance Advanced LIGO registered one part in a thousant change of the proton size !

This event occurred 1.3 billion. Years earlier , when the oxygen. filled atmosphere was formed on. the Earth !


Where was GW150914 coming from? (230-500 Mpc)

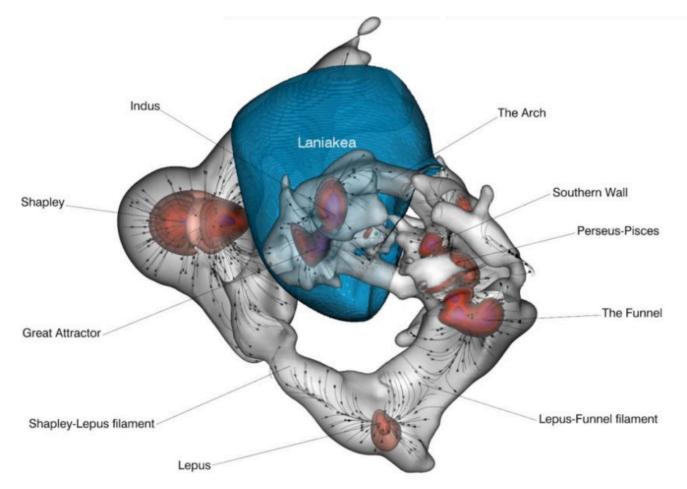
Milky Way ~ 30 kpc



Flow to Shapley Laniakea Vrgo Avw Bow through Perseus Pisces Sculptor Void

Local Group 7 3,1 Mpc

Virgo supergroup ~ 33 Mpc



Laniakea supercluster ~ 160 Mpc

Opens up a new way to map the local Universe

https://pionic.org/motions-of-thousands-of-galaxies-mapped https://player.vimeo.com/video/206210825?byline=0&badge=0&portrait=0&title=0&api=1&autoplay=1

Motions Of Thousands Of Galaxies Mapped

The cosmic velocity web is represented by surfaces of knots in red and surfaces of filaments in gray. The black lines with arrows illustrate local velocity flows within filaments and toward knots. The Laniakea Supercluster basin of attraction that includes our Milky Way galaxy is represented by a blue surface. The region being displayed extends across one billion light years. Credit: Daniel Pomarede, Yehuda Hoffman, R. Brent Tully and Helene Courtois. Credit: Daniel Pomarede, Yehuda Hoffman, R. Brent Tully, Helene Courtois

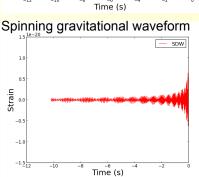
Black hole binary systems in a post-Newtonian (PN) approach

- at small velocities compared to the speed of light

corrections from general relativity 1PN, 2PN, ...

(modify the shape of the orbit)

(modify the orbital plane)


spin corrections 1.5 PN, 2PN, ...

gravitational radiation 2.5 PN, ...

- SDW

Strain

-2.0

(take out energy, momentum, angular momemtum from the system)

In general relativity

Validity:

gravitational radiation emerges in two polarisations: (as their linear combination)

Perturbed Kepler dynamics:

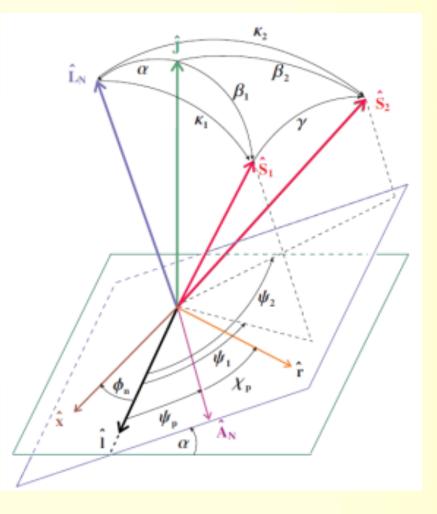
In scalar-tensor gravity theories there are 4 additional polarisations! (see this afternoon talks by Cecília Nagy and Bence Racskó)

- far from the horizon

Non-spinning gravitational waveform

Black hole binary systems: the 2PN conservative dynamics

Binary and spin dynamics to 2PN accuracy, including leading order spinorbit, spin-spin and mass quadrupolemass monopole effects, for generic (noncircular, nonspherical) orbits


Involved, but closed system of first order ordinary differential equations for osculating orbital elements and spin angles

Spinning compact binary inspiral: Independent variables and dynamically preserved spin configurations

L. Á. Gergely, Phys. Rev. D 81, 084025 (2010)

Spinning compact binary inspiral. II. Conservative angular dynamics

L. Á. Gergely, Phys. Rev. D 82, 104031 (2010)

Application 1: the chameleon orbits (equal masses)

We show the existence of chameleon orbits, whose local, orbital parameters evolve from elliptic (in the Newtonian sense) near pericenter, towards hyperbolic at large distances

Behavior consistent with the picture that general relativity predicts stronger gravity at short distances than Newtonian theory does

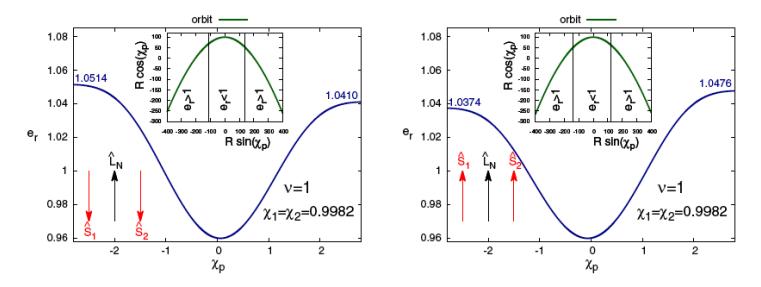


FIG. 2 (color online). Chameleon orbits due to 1PN and SO effects for binaries with equal masses and spins ($\chi_1 = \chi_2 = 0.9982$). The curves and initial conditions are as on Fig. 1. On the left (right) panel the spins are antialigned (aligned) with the orbital angular momentum.

Spinning compact binary dynamics and chameleon orbits L. Á. Gergely and Z. Keresztes, Phys. Rev. D **91**, 024012 (2015)

Application 1: the chameleon orbits (mass ratio 1:30)

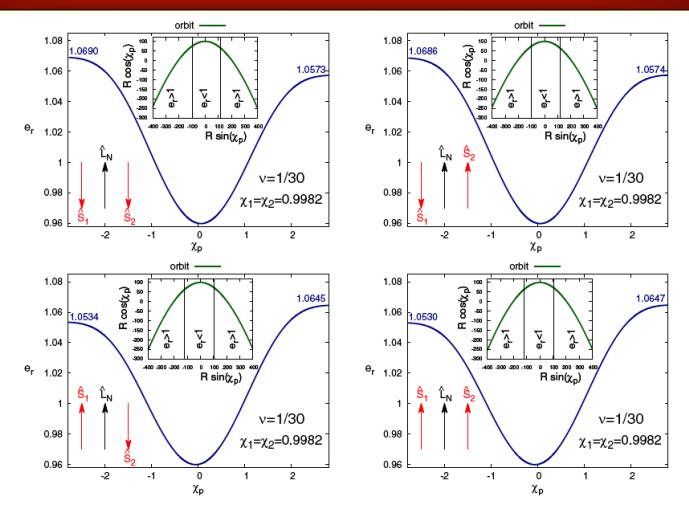


FIG. 3 (color online). Chameleon orbits created by 1PN and SO effects are represented for unequal mass ($\nu = 1/30$) spinning binaries. The same functions as on Fig. 1 are shown for the same initial conditions. The relative direction of the spins and the orbital momentum are indicated by arrows. The dimensionless spin values are the same $\chi_1 = \chi_2 = 0.9982$ in all panels.

Spinning compact binary dynamics and chameleon orbits L. Á. Gergely and Z. Keresztes, Phys. Rev. D **91**, 024012 (2015)

The 2PN secular dynamics

Secular precessing compact binary dynamics, spin and orbital angular momentum flip-flops M.Tápai, Z. Keresztes, L. Á. Gergely, LIGO Document P1600207, submitted to Phys. Rev D

- conservative secular evolution of precessing compact binaries to 2PN order accuracy, with leading-order spin-orbit, spin-spin and mass quadrupole-monopole contributions included
- closed system of first-order ordinary differential equations evolves the pairs of polar and azimuthal angles of the spin and orbital angular momentum vectors together with the periastron angle
- In contrast with the instantaneous dynamics, the secular dynamics is autonomous

Shape parameters (equivalent to semilatus rectum and eccentricity) stay constant:

$$\bar{\mathfrak{l}}_r=\bar{\mathfrak{l}}_r^{PN}=\bar{\mathfrak{l}}_r^{SO}=\bar{\mathfrak{l}}_r^{SS}=\bar{\mathfrak{l}}_r^{QM}=\bar{\mathfrak{l}}_r^{2PN}=0$$

$$\bar{e}_r=\bar{e}_r^{PN}=\bar{e}_r^{SO}=\bar{e}_r^{SS}=\bar{e}_r^{QM}=\bar{e}_r^{2PN}=0$$

→ The 2PN secular dynamics is simpler then the instantaneous dynamics

The 2PN secular dynamics: Euler angles

Inclination:

$$\bar{\dot{\alpha}}^{PN}=0$$

,

$$\bar{\dot{\alpha}}^{SO} = \frac{\eta \pi}{\mathfrak{T} \bar{\mathfrak{l}}_r^3} \sum_{k=1}^2 \left(4\nu^{2k-3} + 3 \right) \\ \times \chi_k \sin \kappa_k \cos \left(\psi_p + \zeta_k \right) ,$$

$$\bar{\dot{\alpha}}^{SS} = -\frac{3\eta\pi}{\mathfrak{T}\,\overline{\mathfrak{l}}_r^4} \chi_1 \chi_2 \times \left[\sin\kappa_1 \cos\kappa_2 \cos\left(\psi_p + \zeta_1\right) \right. \\ \left. + \cos\kappa_1 \sin\kappa_2 \cos\left(\psi_p + \zeta_2\right) \right] ,$$

$$\begin{split} \bar{\alpha}^{QM} &= -\frac{3\eta\pi}{2\mathfrak{T}\,\overline{\mathfrak{l}}_r^4} \sum_{k=1}^2 \nu^{2k-3} w_k \chi_k^2 \\ &\times \sin 2\kappa_k \cos\left(\psi_p + \zeta_k\right) \; . \\ \\ \bar{\alpha}^{2PN} &= 0 \; . \end{split}$$

Longitude of the ascending node:

 $\bar{\phi}_n^{PN}=0\ ,$

$$\bar{\phi}_n^{SO} = -\frac{\eta\pi}{\mathfrak{T}\,\bar{\mathfrak{l}}_r^3 \sin\alpha} \sum_{k=1}^2 \left(4\nu^{2k-3} + 3\right) \\ \times \chi_k \sin\kappa_k \sin\left(\psi_p + \zeta_k\right) ,$$

$$\bar{\phi}_n^{SS} = \frac{3\eta\pi}{\mathfrak{T}\,\bar{\mathfrak{l}}_r^4 \sin\alpha} \chi_1 \chi_2 \\ \times \left[\sin\kappa_1 \cos\kappa_2 \sin\left(\psi_p + \zeta_1\right) \right. \\ \left. + \cos\kappa_1 \sin\kappa_2 \sin\left(\psi_p + \zeta_2\right) \right]$$

,

$$\bar{\phi}_n^{QM} = \frac{3\eta\pi}{2\mathfrak{T}\,\bar{\mathfrak{l}}_r^4 \sin\alpha} \sum_{k=1}^2 \nu^{2k-3} w_k \chi_k^2 \\ \times \sin 2\kappa_k \sin\left(\psi_p + \zeta_k\right) \;,$$

$$\bar{\dot{\phi}}_n^{2PN}=0~.$$

Argument of the periastron:

$$\bar{\psi}_p^{PN} = \frac{6\pi}{\mathfrak{T}\,\overline{\mathfrak{l}}_r^2} \,,$$

 $\bar{\psi}_{p}^{SO} = -\frac{\eta\pi}{\mathfrak{T}\,\overline{\mathfrak{l}}_{r}^{3}}\sum_{k=1}^{2} \left(4\nu^{2k-3}+3\right)$ $\times \chi_{k}\left[2\cos\kappa_{k}\right.$ $\left.+\cot\alpha\sin\kappa_{k}\sin\left(\psi_{p}+\zeta_{k}\right)\right],$

 $\bar{\psi}_p^{SS} = \frac{3\eta\pi}{\mathfrak{T}\,\overline{\mathfrak{l}}_r^4} \chi_1 \chi_2 \\ \times \left\{ \cot\alpha \left[\sin\kappa_1 \cos\kappa_2 \sin\left(\psi_p + \zeta_1\right) \right. \\ \left. + \cos\kappa_1 \sin\kappa_2 \sin\left(\psi_p + \zeta_2\right) \right] + 2\cos\kappa_1 \right. \\ \left. \times \cos\kappa_2 - \sin\kappa_1 \sin\kappa_2 \cos\left(\zeta_2 - \zeta_1\right) \right\} ,$

$$\bar{\psi}_{p}^{QM} = \frac{3\eta\pi}{2\mathfrak{T}\,\overline{\mathfrak{l}}_{r}^{4}} \sum_{k=1}^{2} \nu^{2k-3} w_{k} \chi_{k}^{2}$$
$$\times \left[\cot\alpha \sin 2\kappa_{k} \sin \left(\psi_{p} + \zeta_{k}\right)\right.$$
$$\left. -3\sin^{2}\kappa_{k} + 2\right] ,$$

$$\bar{\psi}_{p}^{2PN} = \frac{3\pi}{2\mathfrak{T}_{r}^{4}} \left[33\bar{e}_{r}^{2} - 4\eta - 6\bar{e}_{r}^{2}\eta + 2 \right] \; . \label{eq:phi_p}$$

→ The 2PN secular dynamics is simpler then the instantaneous dynamics

The 2PN secular dynamics: Spin angles

 $\bar{\dot{\zeta}}_i^{SO}$

Spín polar angles:

 $\bar{\kappa_i^{PN}}=0$,

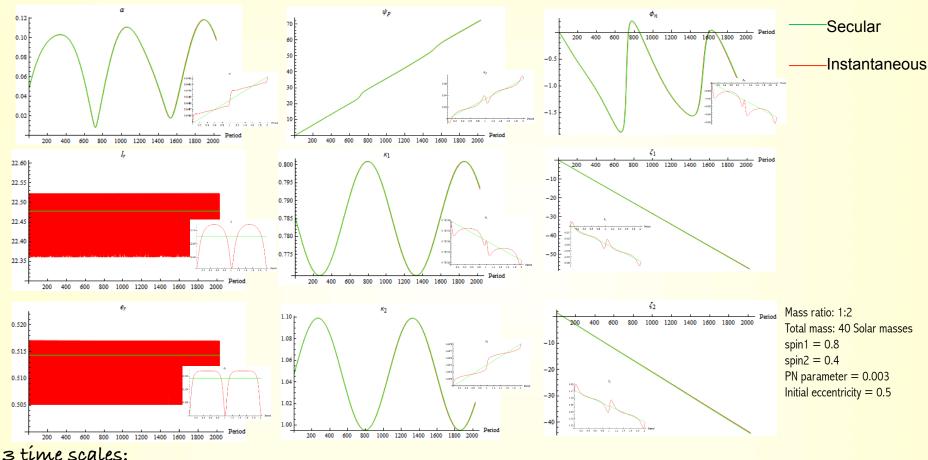
$$\bar{\kappa}_i^{SO} = \frac{\eta \pi}{\mathfrak{T} \bar{\mathfrak{l}}_r^3} \\ \times \left(4\nu^{2j-3} + 3\right) \chi_j \sin \kappa_j \sin \left(\zeta_i - \zeta_j\right) ,$$

$$\bar{\kappa}_{i}^{SS} = -\frac{\eta\pi}{\mathfrak{T}\,\overline{\mathfrak{l}}_{r}^{4}}\chi_{j}\sin\kappa_{j}$$
$$\times\sin\left(\zeta_{i}-\zeta_{j}\right)\left(2\overline{\mathfrak{l}}_{r}\nu^{2j-3}+3\chi_{i}\cos\kappa_{i}\right) +$$

$$\begin{split} \bar{\kappa}_i^{QM} &= -\frac{3\eta\pi}{2\mathfrak{T}\,\bar{\mathfrak{l}}_r^4}\nu^{2j-3}w_j\chi_j^2 \\ &\times \sin 2\kappa_j\sin\left(\zeta_i-\zeta_j\right) \;, \\ \bar{\kappa}_i^{2PN} &= 0 \;, \end{split}$$

$$\bar{\zeta}_i^{PN} = -\bar{\psi}_p^{PN} ,$$

$$= \frac{\eta \pi}{\mathfrak{T}_r^3} \left\{ \bar{\mathfrak{l}}_r \left(4 + 3\nu^{3-2i} \right) + 3 \left(4\nu^{2i-3} + 3 \right) \chi_i \cos \kappa_i + \left(4\nu^{2j-3} + 3 \right) \chi_j \right\}$$

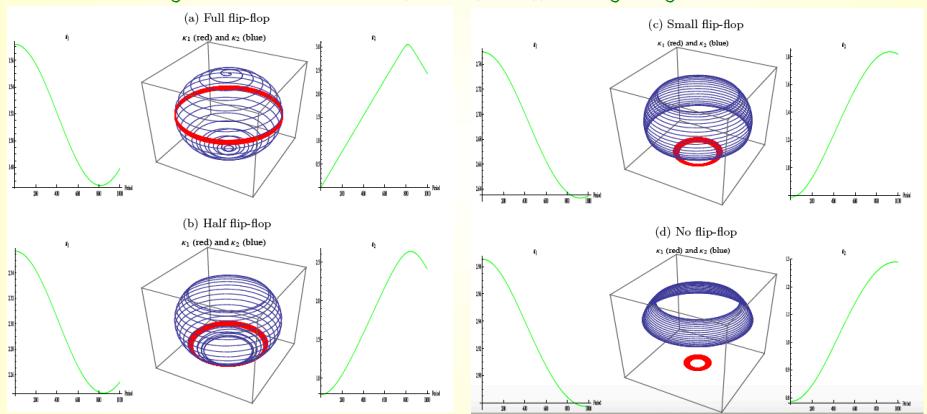

$$\times \left[2 \cos \kappa_j + \cot \kappa_i \sin \kappa_j \cos \left(\zeta_i - \zeta_j \right) \right] \right\}$$

$$\bar{\zeta}_{i}^{SS} = -\frac{2\eta\pi}{\overline{\mathfrak{T}}_{i}^{\overline{\mathfrak{T}}_{j}}} \nu^{2j-3} \chi_{j} \left[\cos \kappa_{j} + \cot \kappa_{i} \sin \kappa_{j} \cos \left(\zeta_{i} - \zeta_{j} \right) \right] - \frac{3\eta\pi}{\overline{\mathfrak{T}}_{i}^{\overline{\mathfrak{T}}_{i}}} \chi_{i} \chi_{j} \times \left\{ \cot \kappa_{i} \left[3 \sin \kappa_{i} \cos \kappa_{j} + \cos \kappa_{i} \sin \kappa_{j} \cos \left(\zeta_{i} - \zeta_{j} \right) \right] - \sin \kappa_{i} \sin \kappa_{j} \cos \left(\zeta_{i} - \zeta_{j} \right) \right\} ,$$

$$\begin{split} \bar{\zeta}_i^{QM} &= -\frac{6\eta\pi}{\mathfrak{T}_r^3} w_i \chi_i \cos \kappa_i \\ &- \frac{3\eta\pi}{2\mathfrak{T}_r^4} \sum_{k=1}^2 w_k \nu^{2k-3} \chi_k^2 \\ &\times \left[\left(2 - 3\sin^2 \kappa_k\right) \\ &+ \cot \kappa_i \sin \left(2\kappa_k\right) \cos \left(\zeta_i - \zeta_k\right) \right] \,, \\ &\bar{\zeta}_i^{2PN} = - |\bar{\psi}_p^{2PN} \,. \end{split}$$

The validity of the 2PN secular dynamics

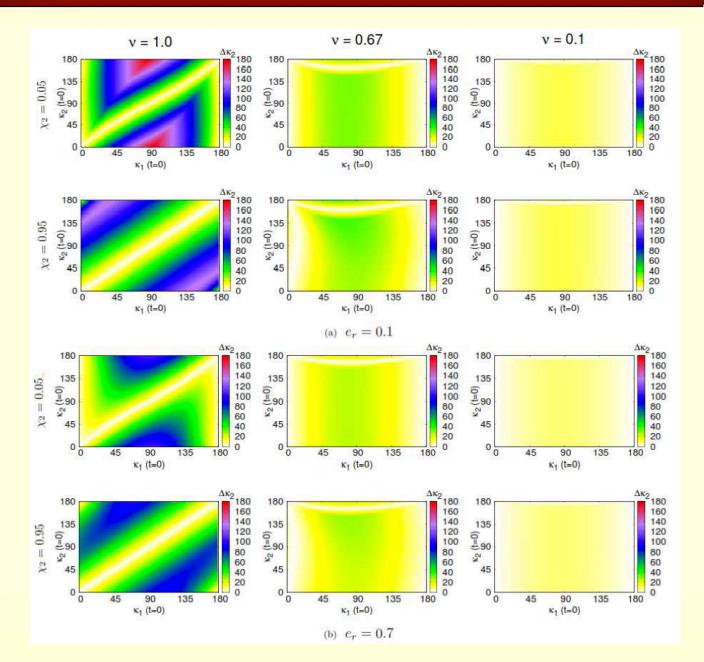
Secular precessing compact binary dynamics, spin and orbital angular momentum flip-flops M.Tápai, Z. Keresztes, L. Á. Gergely, LIGO Document P1600207, submitted to Phys. Rev D



orbital períod << precessional períod << conservative time-scale (no significant change due to GWs) 230 orbital períods 2000 orbital períods 8 precessional períods

→ The 2PN secular dynamics can replace the instantaneous dynamics both on precessional and conservative time-scales

Application 2: Investigating the flip-flop effect


The smaller second spin ventures from one pole to the other – found numerically for particular configurations C. O. Lousto, J. Healy, Flip-flopping binary black holes, Phys. Rev. Lett. **114**, 141101 (2015).

we are able to analyse the occurrence and significance of this effect analytically!

Secular precessing compact binary dynamics, spin and orbital angular momentum flip-flops M.Tápai, Z. Keresztes, L. Á. Gergely, LIGO Document P1600207, submitted to Phys. Rev D

Application 2: Investigating the flip-flop effect

Gravitational wave affected time-scales: Our group participates in the Advanced LIGO data-analysis

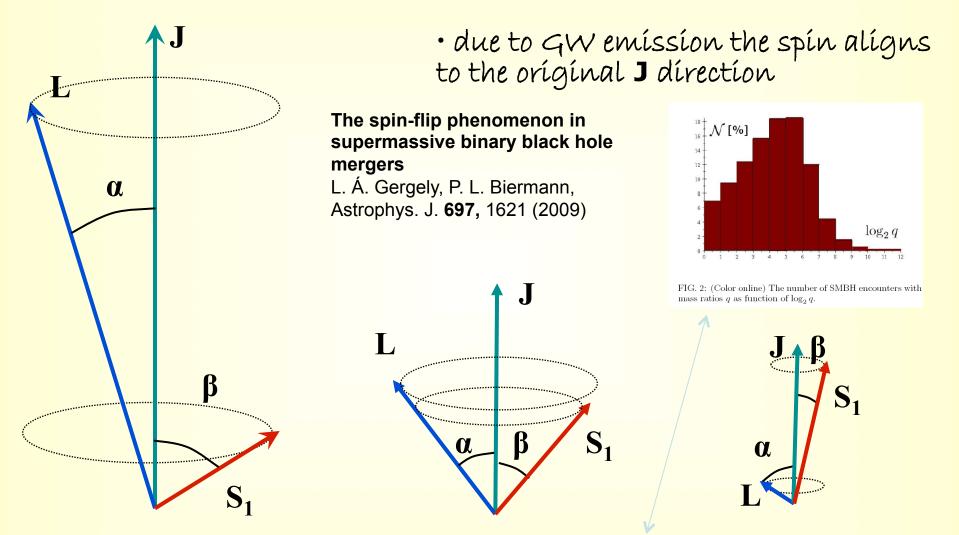
Prelíminary activity:

Márton Tápai (SZTE) and Mátyás Vasúth (Wigner) vísíted the Observational Relativity and Cosmology Group of the Albert Einstein Institute in Hannover

where they became accustomed with:

The pycbc analysis scripts

https://github.com/ligo-cbc/pycbc


The pycbc search pipeline

Data analysis for Advanced LIGO:

In 2017 Márton Tápaí actively participated in the pycbc data analysis

Was the lead pycbc analyst twice (for 5 days of coincident data analysis chunks each) for the O2 data collection

Application 3. The spin-flip effect

Key elements: (i) typically the BHs are not equal mass, $m_2 < < m_1$, neglect $S_2 \sim m_2^2$ (ii) the direction of **J** is conserved, (iii) the magnitude of **S**₁ is conserved \rightarrow spin-flip

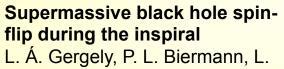

Application 3. The spin-flip effect: time-scales

Table 2: Order of magnitude estimates for the inspiral rate \dot{L}/L , angular precessional velocity Ω_p and tilt velocity $\dot{\alpha}$ of the vectors **L** and **S**₁ with respect to **J**, represented for the three regimes with $L > S_1$, $L \approx S_1$ and $L < S_1$, characteristic in the domain of mass ratios $\nu = 0.3 \div 0.03$. The numbers in brackets represent inverse time scales in seconds⁻¹, calculated for the typical mass ratio $\nu = 10^{-1}$, post-Newtonian parameter 10^{-3} , 10^{-2} and 10^{-1} , respectively and $m = 10^8 M_{\odot}$ (then $c^3/Gm = 2 \times 10^{-3} \text{ s}^{-1}$).

	$L > S_1$		$L \approx S_1$		$L < S_1$	
$-\dot{L}/L$	$\frac{32c^3}{5Gm}\varepsilon^4\eta$	$(\approx 10^{-15})$	$\frac{32c^3}{5Gm}\varepsilon^4\eta$	$(\approx 10^{-11})$	$\frac{32c^3}{5Gm}\varepsilon^4\eta$	$(\approx 10^{-7})$
Ω_p	$\frac{2c^3}{Gm}\varepsilon^{5/2}\eta$	$(\approx 10^{-11})$	$\frac{2c^3}{Gm}\varepsilon^{5/2}\eta \frac{J}{L}$	$(\approx 10^{-8} \frac{J}{L})$	$\frac{2c^3}{Gm}\varepsilon^3$	$(\approx 10^{-5})$
$\frac{\dot{\alpha}}{\sin(\alpha+\beta)}$	$\frac{32c^3}{5Gm}\varepsilon^{9/2}\frac{\eta}{\nu}$	$(\approx 10^{-16})$	$\frac{32c^3}{5Gm}\varepsilon^{9/2}\frac{\eta}{\nu}\frac{L^2}{J^2}$	$\left(\approx 10^{-11} \frac{L^2}{J^2}\right)$	$\frac{32c^3}{5Gm}\varepsilon^{7/2}\eta\nu$	$(\approx 10^{-8})$
Time to merger:		30 million years		300 years	few	months
Precession time scale:		3000 years		3 years		days
Variation of the tilt angle during one precession:		2 arcsec (2 arcsec (6 x10 ⁻⁴ arcsec/year)			nin (/day)

Application 3. The spin-flip effect: magnitude

In the typical SMBH binaries the spin-flip occurs during the inspiral!

I. Caramete, Class. Quantum Grav. **27** (2010) 194009

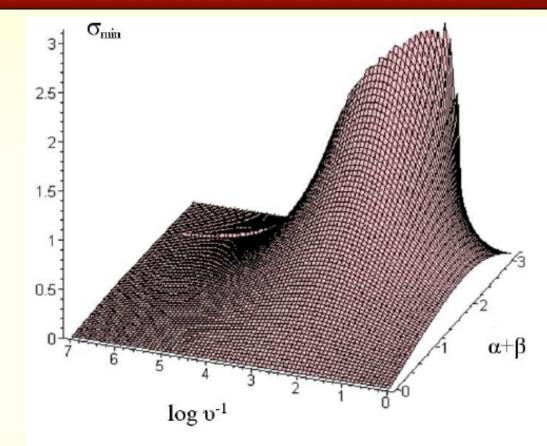
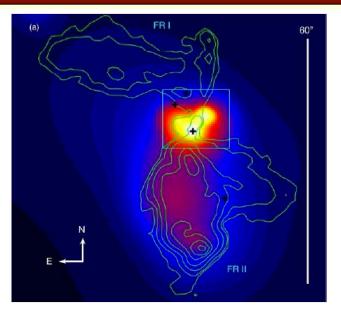
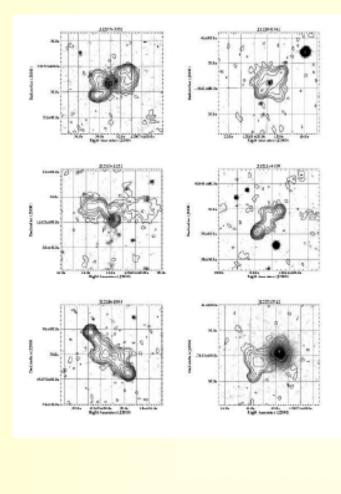



Figure 2. The spin-flip angle σ_{\min} as function of the relative orientation of the spin and orbital angular momentum $\alpha + \beta$ (a constant during inspiral), and mass ratio ν . For a given mass ratio the spin-flip angle has a maximum shifted from $\pi/2$ towards the anti-aligned configurations. The mass ratios $\nu = 1$; 1/3; 1/30 and 1/1000 are located on the log ν^{-1} axis at 0; 1.09; 3.40 and 6.91, respectively, confirming the prediction, that a significant spin-flip will happen in the mass ratio range $\nu \in (1/30, 1/3)$. For mass ratios smaller than 1/100 the spin does not flip at all, as the infalling SMBH acts as a test particle.

X-shaped radio galaxies: surviving witnesses of coalescing black hole binaries



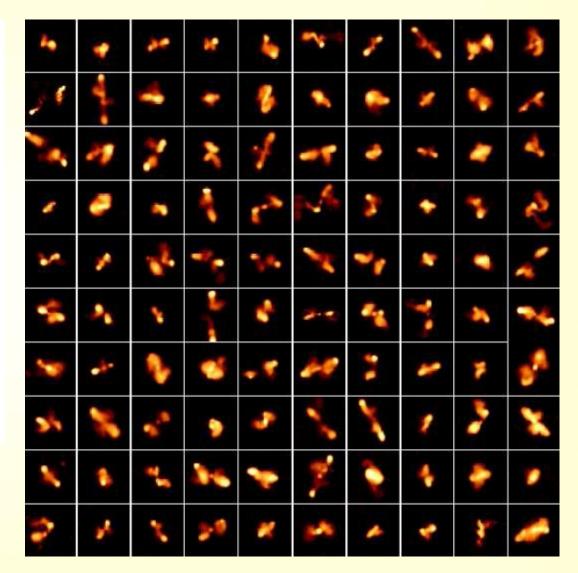

On the origin of X-shaped radio galaxies Gopal-Krishna, P. L. Biermann, L. Á. Gergely, P. J. Wiita, Research in Astron. Astrophys. **12**, 127–146 (**2012**)

Fig.1 Radio contours overlain on X-ray emission for the XRG 3C 433. Reprinted with permission from Miller & Brandt (2009); copyright AAS.

Spin-flip model:	wing formation ceases before the primary lobes begin to form	
Description	Jet direction flips due to re-alignment of the spin of the dominant SMBH, due to its merger with another SMBH.	
Key merit/evidence	* Explains why hotspots are never seen in both lobe pairs.	
	* Can explain secondary lobes being larger than primary lobes.	
	* Post spin-flip, jets can easily propagate straight outwards.	
	* Z-symmetry of the wings can be easily understood.	
	* The empirically inferred systematic excess of SMBH mass in XRGs (compared to those	
	in RGs) fits naturally into this picture.	
	* Can also explain the formation of superdisks.	
Does not naturally explain	* The correlation of the radio lobe axis with the optical axis of the host elliptical.	

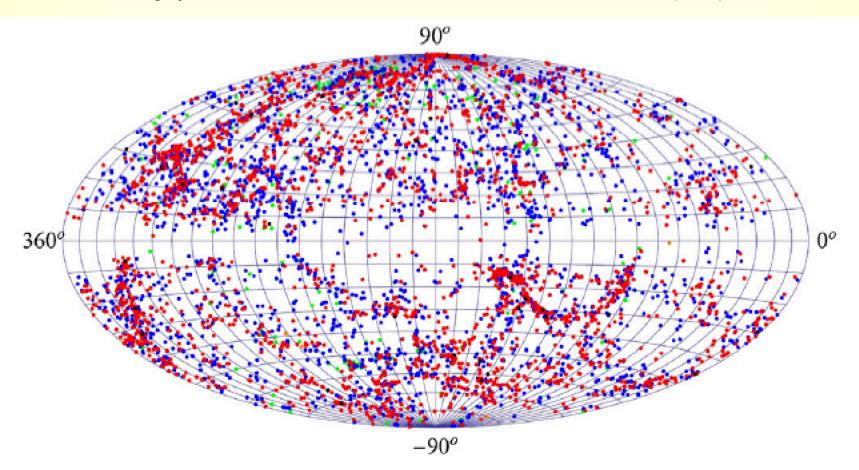
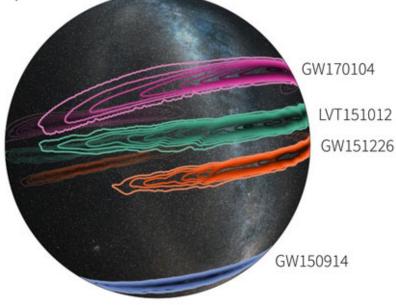
XRG catalog, post spin-flip radio galaxies

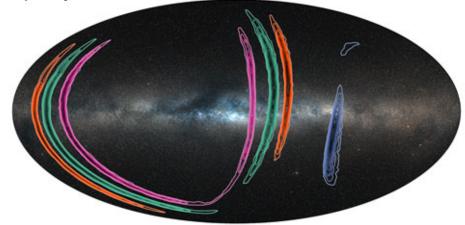
Cheung, C. C. : The Astronomical Journal, 133, 2097-2121 (2007), arXiv:astro-ph/0701278v3

The sky in supermassive black holes

Supermassive black hole spin-flip during the inspiral

L. Á. Gergely, P. L. Biermann, L. I. Caramete, Class. Quantum Grav. 27 (2010) 194009


Figure 1. Aitoff projection in galactic coordinates of 5895 NED SMBH candidate sources. The sample is complete in a sensitivity sense; in order to derive densities one needs a volume correction. The color code (online only) is orange, green, blue, red, black corresponding to masses above $10^5 M_{\odot}$, $10^6 M_{\odot}$, $10^7 M_{\odot}$, $10^8 M_{\odot}$, $10^9 M_{\odot}$, respectively. With the exception of the less numerous first range (orange), representing compact star clusters, the rest are SMBHs.

The sky in detected GWs (for now!!!)

Celestial sphere

Aitoff projection

Localization will improve drastically with the new detectors

These are merely scratches on the GW sky!

Need new (and larger!) detectors (ET, DECIGO, LISA), in order to map the sky in GW at all frequencies !