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Definition and Properties of Entropic Distance

Entropic Distance and Divergence

Properties of metric distance:
@ p(P, Q) > 0 for a pair of points P and Q.
@ p(P,Q)=0< P=Q (then and only then)
@ (P, Q) = p(Q, P) symmetric measure
@ o(P,Q) < p(P,R) + p(R, Q) triangle inequality in elliptic spaces

)

Entropic divergence:
@ p(P,Q) > 0 for a pair of distributions P, and Q.
@ p(P,Q) =0« P = Q (then and only then)
@ p(P,Q) <0if Qs the stationary distribution
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Definition and Properties of Entropic Distance

Symmetrized Entropic Divergence

inherited properties

Entropic divergence p(P, Q) = )", 0(&n) Qn With £, = P/ Q.
Symmetrized kernel function:

5(§) = a(§) +£a(1/5). (1)
Jensen inequality tells for ¢’/ > 0:

> on)Qn >0 (Z g,@,,) =0 (Z Pn> =o(1). )

n

For property 1 and 2 one sets: o(1) = 0.
it follows s(1) = 0 and s” > 0.
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Definition and Properties of Entropic Distance

Symmetrized Entropic Divergence

emergent new properties

Derivatives:

6 = o(&)+Ea(1/8)
J) = a'(5)+o(1/§)—1a'(1/§)

SE) = o'(e) - Eyﬁ/{ + ST + 5501/ @)

Consequences:

(4] 5(1 —20(1) =0

e s(1)=0(1) =

Q> 0 = &m=1isaminimum
Q s >0
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Definition and Properties of Entropic Distance

Entropic distance evolution

General P-Linear Discrete Markovian

Consider p(P, Q) = 3 ons(g;) and  Po= 3 (WanPm — WanPh).
n

m

Using &» = Pn/Qn we obtain

p= 25 () Pr = D5 (6n) (Wam EmOm — Wi €0 Q) - )

Apply ém = &n + (ém — &n) to get

p = Z s'(&n) fnw

+ D5 (€n)(Em — &n)Wom O (5)
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Definition and Properties of Entropic Distance

Entropic distance evolution

Taylor series remainder theorem in Lagrange form

Recall the Taylor expansion of the kernel function s(&),

(em) = 5(6n) + [ En)En — €0) |+ 35" (Cm)(En —En)’,  (6)

with ¢mn € [Em, &n]-

It delivers

p = 3 [5(€m) — e O — %nzn;s”(cmn) (Em— &) WamQm. (7)

n,m

With positive transition rates, w.m > 0 the approach to stationary distribution,

p < 0 is hence proven for all 5" > 0.
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Definition and Properties of Entropic Distance

Without detailed balance

Example: Kullback—Leibler divergence

In case of 5(&) = —In&, wehave s’ =—1/¢ and s7(¢) =1/€2 > 0.

The integrated entropic divergence formula (no symmetrization) in this case
is given as

Kullback-Leibler divergence @)

p(P,Q) =3 Qun %. ®)

For P,(,12) = P,(,”P,(,Z) also 0212) = Qf,”o,(,z) therefore we have &212) = gg)gﬁf). Aiming at

5(£(12)) = 5(£(M) + 5(£(2)), the solution is s(£) = o In €. For s’/ > 0 it mustbe o < 0,50 0.B.d.A. o = —1.
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Definition and Properties of Entropic Distance

Entropic divergence as entropy difference

Example: logarithm

Entropic divergence from the uniform distribution U, =1/ W,n=1,2,... W:
Kullback-Leibler divergence ©)
w
p(U,Q) = > QuIn(WQn) = InW —> " QuInQy = Sga[U] — SsalQ] (9)

n=1

with Sgg being the Boltzmann-Gibbs—Planck—Shannon entropy formula.

From the Jensen inequality it follows p(U, Q) > 0, so Sgg[U] > Szs[Q).
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Definition and Properties of Entropic Distance

Entropic evolution

More general dynamics: P-nonlinear Markovian

Dynamical equation

Po = > [Wom a(Pm) — Wimn a(Py)] (10

Stationarity condition

0 = Z [an a(om) — Wmn a(Qn)] . (11)

Entropic distance formula

p(P,Q) = > (P, Qn) (12)

n

the dependence on Q, can be fixed from p(Q, Q) = 0.
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Definition and Properties of Entropic Distance

Without detailed balance

Change of entropic distance

b= 3 22 Wom (@) — Wi 2(Qr )61 (13)
with & = a(Py)/a(Qp).

We put &m = &n + (Em — &n) in the first summand:

p = Z aa;n énz [an a(Q = n n)] aF Z %an a(Qm) (gm — fn)
’ 1

(14)

In order to use the remainder theorem one has to identify ®
8o ., (a(Pn)

67’," =S5 (En) =5 (a(Qn)) o (15)

then p < Ofors’” > 0and P # Q.
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Definition and Properties of Entropic Distance

Without detailed balance

Example: g—Kullback-Leibler divergence

In case of 5(¢) = —In&, we have s”(¢) = 1/£2 > 0.

Now having a fractal nonlinear stohastic dynamics, a(P) = P*.

The integrated entropic divergence formula (no symmetrization):

Tsallis divergence, ©
toles _ Q,? _ Qn
5P, = " PN p(P,Q) = zn:Q"'"*Fn' (16)
with N
1—x*"
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Definition and Properties of Entropic Distance

Without detailed balance

Example: g—Kullback-Leibler divergence

= -1

In case of s(x) = —In,(x), we have s'(x) = —x~%, 5" (x) =vx~""' > 0.

Also having a fractal nonlinear stohastic dynamics, a(P) = P*.

The integrated entropic divergence formula (no symmetrization) becomes

Tsallis divergence, g = \v

Qn P,\'"? o8
p(P,Q) = ;1 s {1 — <En) ] = Xn:inan—n. (18)
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Definition and Properties of Entropic Distance

Entropic divergence as entropy difference
Example: g-logarithm

Entropic divergence from the uniform distribution U, =1/ W,n=1,2,... W:

w

AU, Q) = Z1O"q

n=1

[1-wan)™'] = W (SrlU] - Srla).  (19)
with St being the Tsallis entropy formula:

Tsallis entropy, g = A\v

Sr[Q) = Z(oq Q) = — Y Quling(Qn). (20)

From the Jensen inequality it follows p(U, Q) > 0, so S7[U] > S7[Q]. The
factor W9~ signifies non-extensivity.
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Useful Master Equations

Schemes of Master Equations
Balanced vs One-Sided Growth

Symmetric Short Jumps: Drift + Diffusion
Wnm = )\m5n+1,m 4 le(sn—1,m
Po = [(AP)ar1 — (AP)d]
= [(wP)n = (uP)aa] (21)

Unidirectional + Resetting
Wpm = ﬂm5n71,m = ’Ym(;n,o

Py = (v) — (70 + ro)Po and @

3

P, = Illn—1Pn—1 — (Nn+’7n) Pn
(22)

=]1(¢] Entropic Distance



Useful Master Equations

Unidirectional

sources of step-up, un rates

@ Propagation (hopping) on a chain: u, = const.
@ Rich gets richer: pp o< (n+ b)

n
@ Cumulative effect: pp < > const x n
i=1

@ Cancer growth: u, < exp(n).
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Useful Master Equations

Resetting

sources of , rates

@ Loosing all money when having n: v, = const.
@ Exponential dilution of sample space (cf. citations):

dN
Ttn = pn—1Np_1 — pnNp;

with Py(t) = Na(t)/N(t), N =", Ny and v, = N/N =
const.

@ Independent decay rate of all units: vy, oc n

@ Evolutionary resets in number of species due to
catastrophes: v — 0.
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Useful Master Equations

Short step-up + long hops to zero:

stationary distribution

Stationary limit: P,(t) — Qp, from Qn = 0 one obtains

Qo = (7)q /(70 + 1o) and stationary ®
Qo | A
Q=P gy == PO (142 (23)
Mn + Yn Bn i Hj
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Useful Master Equations

Constant rates

— exponential distribution

Assume p; = o, attachment rate independent of number of
links.

Q=[] 7= = Q(t+r/0)7" (24)
F T

Geometrical sum for normalization. We obtain

Boltzmann—Gibbs exponential ®

1
Q= —n-In(1+'y/0'). 25
n 140/~ ¢ (25)
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Useful Master Equations

Linear preference, constant loss rate
— Waring distribution

Linear preference in attachment: p; = o(j + b) (b > 0).

n

j—1+b (b)n
Q Q —F = Q . 26
e Y RN R A OF =
withc = b+ 1+ /0. Norm:
Y>hQn=Q(c—1)/(c—1-b)=1.
Pochhammer ratio (Waring) ®
c—1—b (b)n
= 27
Qo c—1 (¢)n 27)
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Useful Master Equations

Matthias principle: tail of Waring

— power-law!

The above result in the n — oo limit:

Since F( b)
E c—pl(n+ .
nll—>moo n r(n+c) 1 (28)
we obtain
Pochhammer in n — oo limit: power-law! ©
Y reey __
Q, — —~ L g1/, 29
" 7 44 bo I(b) (29)
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Useful Master Equations

Avalanche dynamics in the large n limit!

continuous variable: x = n- Ax

@ P,(t) = Ax - P(n-Ax,t) ensures ioj Pn(t) = [ P(x, t)dx.
n=0 0

@ jpn= A -pu(n-Ax) and v, =~(n-Ax) leadto

Continuum Master: ®

DRt =~ (u(x) P(x,1)) —1(X)P(x,1).  (30)

with the stationary distribution

o= (31)
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Useful Master Equations

Particular continuous stationary distributions

with constant v(x) = ~.

For constant rate u(x) = o exponential:
Qx) = Leax (32)

For linear preference p(x) = o(x + b)  Tsallis—Pareto:

O (X
ax) = 2 (1+3) . (33)
For exponential dispreference u(x) = ce=® Gompertz
Q(X) _ Zeax-i—%ﬁ_ea)()‘ (34)

g
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Useful Master Equations

Fluctuation — Dissipation

Conituous

Knowing / observing Q(x) and ~(x) one obtains

o0

10 = gog [ AW = (o (@

X

Analogy: multiplicative noise
Langevin: p + (yp — &) = 0; stochastic propertles (vp— &) = Ki(p)and {(vp — &)(vp — &)’) = Ka(p).

Then the Fokker-Planck, gi = 8P(K1 f)+ ap2 (K2f) = 0 has the detailed balance distribution

P Ky (q)
kK —IBg®
Qp) = e 0 . (36)
Ka(p)
The Fluctuation—dissipation theorem has the form
1 oo
kee) = = [ Ki@)a(@) da. ®7)
®
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Useful Master Equations

Fluctuation — Dissipation

Discrete

Summing up the recursion from n = m+ 1 to oo delivers
1 (e.o]
Hn = 5 Z ’Ymom- (38)

n m=n+1

Kubo formula: apply the above to constant v and
exponential distribution Q, = e %"/ Z.
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Useful Master Equations

Rate, Survival, Hazard
Connection to failure probability

Fluctuation-Dissipation vs. rate reconstruction vs. hazard

Cumulative hazard H(x)
hazard (rate) h(x) = H'(x)
PDF Q(x) = h(x)e H®
Survival (rate) | R(x) = [Q(u)du = e

_ _BR(x) _ ~
) =700 = A’

=]1(¢] Entropic Distance



Applications

Networks: degree distribution
S.Thurner, F.Kyriakopoulos, C.Tsallis, PRE 76 (2007) 036111

@ un=o(n+b)or u(x) =o(x + b): Matthew principle for adding the next
connection to a node with n

@ ~, = ~: attack success ratio against a node with n connections
@ Q(x) ~ (1 + x/b)~"/7~": stationary degree distribution (g-exponential)

10"
+ N=500
= N=1000
102 o N=2000
g-exponantial
—
;f: 107
g
10°% .::-1
q=1375
K =0.64052 ——
o % =29615e-005
10
10° 10' 10° 10
(@) k
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Applications

Networks: degree distribution 2
M.Sholz, J.DataMining & Digital Humanities, 2015

ety s
A B [ D E
” 10° 10° 10° 10° 10°
H S
LI ~ T
s \ § =
g N
< 10! 10 10' - 10' 5 10
e
X v v
; \
. ) d
.
10° 2" 10° 10" 10 + 10°
10° 10° 10° 10° 10° 10 10" 10° 10° 10" 10" 10 10

With v(x) = vIn(x/a), u(x) = ox we get log normal

Qx)dx = Ke 7" dt  with t=In(x/a). (41)
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Applications

Citations

Total number and fraction dynamics

number dynamics probability dynamics
b N 5
\ Y </>
ng: 1,N t

n
ZH‘ = uP,

v

Figure 3. Schematic representation of the coarse-grained random growth model
considered in the model. The panel on the left side indicates the growth process
in the number of elements with n quanta: N,. Due to the fact that the total




Applications

Citations

Exponential growth

@ ®

@ number of ciations
()

@ number of publications
—

18/

005 2007 2009 2011 2013 201 2005 2007 2009 2011 2013 2015
vear year

Figure 2. Results for the MEDLINE/PubMed database. Figure 2a illustrates
the time evolution of the yearly indexed papers, n(z), and the total number of
citations, ¢(r), introduced by them for each year in the 2005-2015 time
interval. The trend n(z) can be nicely fitted (red curve) with an exponential
curve with y=006 using #,=2005 and n,=699915 . Using 7,=2005 ,
n, = 699915, ¢, =14792864, g=1.4 and y=0.06 (o =y/g~0.043) the trend
for ¢(t) given by equation (2.3) can be fitted by choosing b~1.6. Figure 2b
illustrates the time evolution for the yearly incoming total number of citations
divided by the total number of new papers, m(t). Using the parameters from
n(t) and c(¢) the m(r) trend given by equation (2.1) is plotted by the black

curve.




Applications

Citations

Fraction of n times cited: Facebook and Web of Science

10 T T T T T T 3
@ wos
@ JF
0ot o8 R
=
= — Tsallis Pareto g=1.4
S
10°F A NYTimesFB [ Harvard SC 1
A Ronaldo FB [ Lancet SC
A NASAFB Stanley SC
100k, . . . , b
0.01 0.1 1 10 100 1000
XKxy

Figure 1. Rescaled distribution of the citation (share) numbers. f(x) is the
probability density (PDF) for one paper (post) to have x citations/shares. We
present the (x)- f(x) value as a function of x/(x) (({x) the mean value, or
first moment of the PDF). For high citation number a clear power-law trend is
visible. Different symbols are for different datasets as illustrated in the legend.
The considered datasets are described in the Methods section. For high x /(x>
a clear power-law trend is visible. The entire curve can be well-fitted with a
TP distribution (1) with g=1.4.
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Applications

Hadronization
From QGP to n hadrons: NBD

PHENIX, PRC 78 (2008) 044902

Au + Au collisons at /sy = 62 (left) and 200 GeV (right). Total
charged multiplicities.

AN, /(AN <N,>)

1N, N, (N[N _2)

Yn=o(n— Kf), un = cf(n+k); Q,= (n+/r<:1)fn(1 + )k,
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Applications

Economy

Income distribution KSH data

Hungarian income distribution 2014

1 : : : : ' :
KSH sampling @
Gamma POF 2,575, 4.6 e
01
un
Te}
S
B
2 0.01
S
g
&
0.001
0.0001
0 50 100 150 200 250 300 350 400
thousand HUF
C
— _ — _ a ,c—1 _—ax
v(x)=o(ax—c), px)=o0x Q(x)=FGXx" e ™.
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Applications

History

Medieval Servant Distribution G.Hegyi, Z.Néda, M.A.Santos, Physica A 380 (2007) 271

1000

rank

1 10 100 1000 F0000
wealth (owned serf families)

Fig. 2. The rank of noble families and institutions
total wealth on a log-log scale. Data for the Hun

a function of their estimated
an noble society between the

years 1767-1773. The total wealth of a family is estimated in the number of owned
serf families. The power-law fit suggests a Pareto index o = 0.99.




Applications

Summary of Rates and PDF-s

p(x) =~/h(x)

at constant aging

L ym(x) | fin, p(X) | Qn, Q(x) |
const const geometrical — exponential
const linear Waring — Tsallis/Pareto
const sublinear power Weibull
const quadratic polynomial Pearson
const exp Gompertz
In(x/a) oxX Log-Normal

linear const Gauss

o(ax —c) ox Gamma

Deviation shrinks and moves as a soliton: Xe = p(xe) !
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Applications
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