
Higher order anisotropies from hydrodynamical freeze-out models

Máté Csanád, Sándor Lökös, Boris Tomá²ik, Jakub Cimerman and Tamás Csörg®

BGL 2017, Gyöngyös, Hungary

1 / 22



Introduction and motivation

sQGP behaves like perfect �uid → freeze-out hydro models or hydro solutions
Finite number of nucleons → generalized space-time and the velocity �eld geometry
Multipole in space-time solution: PRC90,054911 → higher order �ows
Azimuthally sensitive HBT have cos(nφ) dependences → generalized velocity �eld needed
These can be studied experimentally: NPA 904-905 (2013), PRL. 112 (2014) 22
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Model building (recipe)

Parametrization of the hypersurface
(Cooper-Frye factor)
Thermal distribution
Propertime distribution
at the freeze-out
Quantity measures the geometry
Some prefactors
S(x,p) is the product of these
Main measurable quantities:

Spectra: N1(pt , ϕ) =
∫
S(x , p)d4x

Flows 〈N1(pt , ϕ) cos(nϕ)〉

Correlation C2(q,K ) = 1 +
∣∣∣ S̃(q,K)

S̃(0,K)

∣∣∣2
Azimuthally sensitive correlation

e.g. R2

side
= 〈r2

side
〉 − 〈rside〉2

where rside = r sin(α− ϕ)
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Two freeze-out model

Buda-Lund model Blast-wave model

Cooper-Frye factor pµu
µ pµu

µ

Propertime distribution δ(τ − τ0) 1√
2π∆τ

exp
[
− (τ−τ0)2

2∆τ2

]
Thermal distribution exp

[
−pµuµ+µ

T

]
where

T = T0/(1 + a2s)
µ
T = µ0

T0
− bs exp

[
−pµuµ

T

]
Space-time geometry s scale parameter Θ

(
1− r

R(ϕ)

)
box pro�ie

Space-time anisotropy should put into the scale parameter or the box pro�le

The velocity �eld anisotropy should put into the uµ velocity �eld

Now put everything together!
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The Buda-Lund model
PRC54 (1996) 1390, EPJA (2016) 52: 311 and NPA742 (2004) 80-94

The spatial asymmetry is described by the scaling variable

General n-pole spatial asymmetry (elliptical case: n = 2):

s =
r2

2R2

(
1 +

∑
n

εn cos(n(φ−Ψn))

)
+

r2z
2Z 2

Ψn is the angle of the n-th order reaction plane

Derive the velocity �eld from a potential: uµ = γ(1, ∂xΦ, ∂yΦ, ∂zΦ)

General n-pole asymmetrical potential (elliptical case: n = 2):

Φ = H
r2

2

(
1 +

∑
n

χn cos(n(φ−Ψn))

)
+ Hz

r2z
2
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General aspects Eur. Phys. J. A (2016) 52: 311

There is multipole solution: Phys.Rev.C90(2014) based on HeavyIonPhys.A21:73(2004)

In our case uµ∂µs = 0 can be ful�lled :

in O(εn) and O(χn) if ε̇n = −2 Ṙ
Rχn and Ṙ

R = H

in any order with the same index Ṙ
R = H

(
1 + 1

2

∑∞
n=1

εnχn

(
1 + n2

4

))
Or for any k > 0

ε̇k = 2Hχk − 2

(
Ṙ

R
− H

)
εk + H

∞∑
n=1

εnχn+k

(
1 +

n(n + k)

4

)
+ H

∞∑
n=1
n 6=k

εnχ|n−k|

(
1 +

n(n − k)

4

)
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The Blast-wave model
PRL (1979) 42, PRC (2004) 70, EPJ. A (2017) 53: 161

Space anisotropy is characterized by Fourier series of the �reball radius

R(θ) = R0(1− a2 cos(2(θ − θ2))− a3 cos(3(θ − θ3)))

The velocity �eld with ρ = ρ
(

r
R(θ) , θ

)
and θb = θb(r , θ)

uµ = (cosh ηs cosh ρ, sinh ρ cos θb, sinh ρ sin θb, sinh ηs cosh ρ)

Flow anisotropy is characterized by Fourier series of the transverse rapidity

ρ

(
r

R(θ)
, θ

)
=

r

R(θ)
(1 + 2ρ2 cos(2(θb − θ2)) + 2ρ3 cos(3(θb − θ3)))

θb is angle of the transverse velocity
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Observables at freeze-out

Invariant transverse momentum distribution, �ows, azimuthally sensitive HBT radii
All asymmetries are investigated in their respective reaction plane
Rotate the system to the second / third order plane and average on the angle of the third
/ second order plane
The proper parameters can be set to zero to avoid the averaging
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Invariant momentum distribution in Buda-Lund model

Signi�cant change could be at high pt , the log slope is not a�ected strongly
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Invariant momentum distribution in Blast-wave model

Flow anisotropy also in�uences azimuthally integrated spectrum a bit
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Ambiguity in determination of the �ow

The parameters a�ect the �ows together
We can get the same vn with di�erent combination
In the Buda Lund model:
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Ambiguity in determination of the �ow

The very same in the Blast-wave model
Only the �ow is not enough to determine the anisotropies
v2(pt) and v3(pt) in the Blast-wave model at pt = 300 MeV
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HBT radii

Calculate in the out − side − long system

R2
out = 〈r2out〉 − 〈rout〉2 and R2

side
= 〈r2

side
〉 − 〈rside〉2

where rout = r cos(φ− α)− βtt and rside = r sin(φ− α)
→ C. J. Plumberg, C. Shen, U. W. Heinz Phys.Rev. C88 (2013) 044914

There can be higher order parts
→ B. Tomá²ik and U. A. Wiedemann, arXiv:hep-ph/0210250

We use the following parametrisation in

elliptical case: R2
out = R2

out,0 + R2
out,2 cos(2α) + +R2

out,4 cos(4α) + R2
out,6 cos(6α)

triangular case: R2
out = R2

out,0 + R2
out,3 cos(3α) + R2

out,6 cos(6α) + R2
out,9 cos(9α)

Similar to the R2

side
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Results of the parametrization � Second order case (Buda-Lund model)

This case already have investigated: Eur.Phys.J.A37:111-119,2008
Mainly cos(2φ) behaviour but higher order oscillations are also present
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Results of the parametrization � Third order case (Buda-Lund model)

For details see: Eur. Phys. J. A (2016) 52: 311
Mainly cos(3φ) behaviour but higher order oscillations are also present
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Results of the parametrization with di�erent a (Blast-wave model)

For details see: Eur. Phys. J. A (2017) 53: 161
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Results of the parametrization with di�erent a (Blast-wave model)

For details see: Eur. Phys. J. A (2017) 53: 161
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Mixing of the parameters in the Buda Lund and the Blast wave model model
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Disentangling
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How to disentangle the parameters
of the �ow and the asHBT radii?

With a simultaneous measurements
of these two observables

After measuring vn and one of the
correlation radii R2

i ;n we can combine
contour plots and get exact parameters
of both anisotropies
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Qualitative illustration of the data analysis with the Blast-wave model
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Qualitative illustration of the data analysis with the Blast wave model
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Conclusions

The geometry and the velocity �eld are generalized in freeze-out models

Higher order �ows and azimuthally sensitive HBT radii can be derived

Absolute value of the azimuthal HBT radii depend on asymmetries

Higher order oscillation can be observed in HBT radii

The spatial and velocity �eld anisotropies both in�uence vn coe�cients and HBT radii

The asymmetry parameters can be disentangle from the �ows and the amplitudes

Thank you for your attention!
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Backup slides � Higher order amplitudes

Second order:
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Backup slides � Higher order amplitudes

Third order:
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Backup slides � Averaging

Averaging vs. set-to-zero
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Backup slides � Square of residuals

An example: square of residuals of R2
out with di�erent parametrizations
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Earlier results

Fits with elliptical Buda Lund model: Eur.Phys.J. A47 (2011) 58-66
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