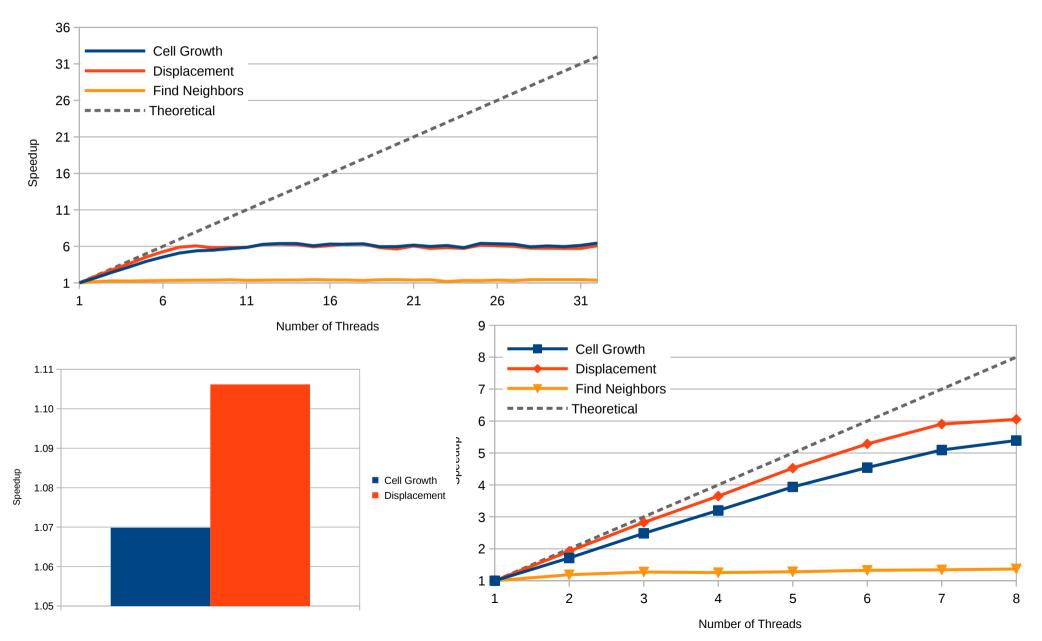
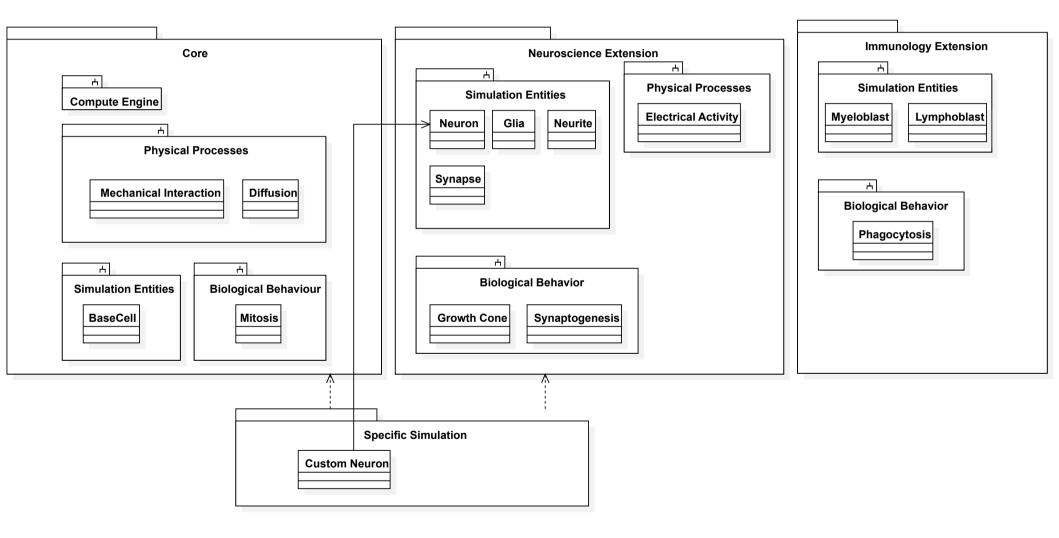

BioDynaMo Cloud Architecture Lukas Breitwieser


Outline


- Current Status
- Our Goal (in numbers)
- High Level Architecture
- Components in more detail
- State
- Failure scenarios
- Requirement for BLOB store
- Volunteer Computing

- API completely different from ported BioDynaMo
- Only cell bodies, no neurites
- Only mechanical interaction

Other

- Flexibility concept exists
- Ahmad integrated IO into the serial BDM version

Our Goal

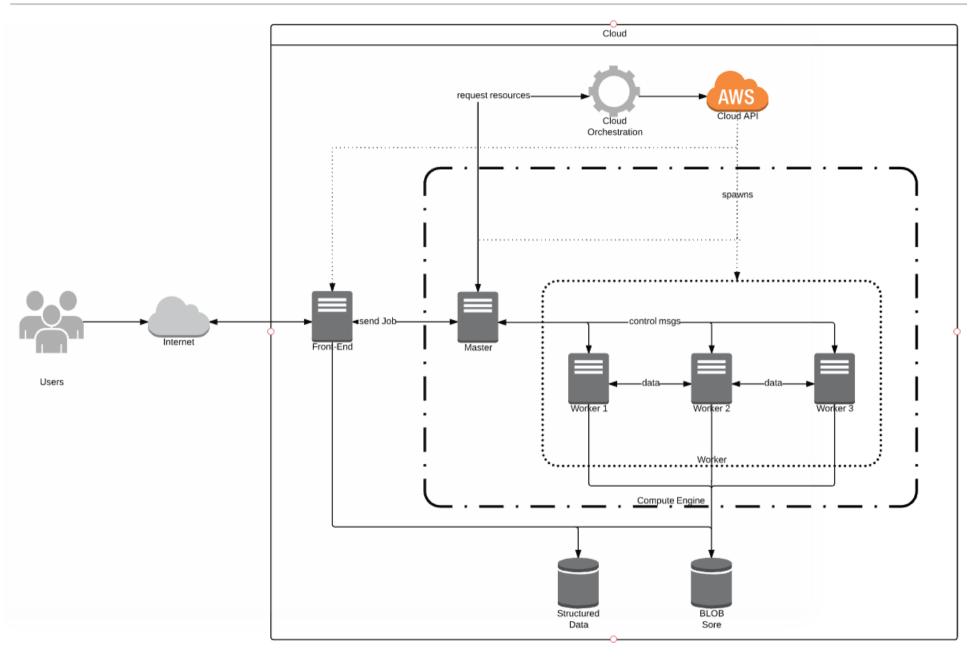
Run an agent based simulation in a distributed environment

Agents only see local environment

Difference to HPC:

- failures are the norm not the exception
- massive scale
- commodity hardware

Failures


server uptime without failure	3	years	
	1095	days	
Failures per hour is binomial r.v.			
Expectation $E[X] = np$	#machines	failures per day	
	100	0.1	
	1000	0.9	
	10000	9.1	
	100000	91.3	

Computational Complexity

- Details: see spreadsheet
- Summary:
- Simulating 10% of the cortex requires:
 - 608 TB of memory
 - 10000 machines with 61 GB
 - Costs for one month 24x7 (AWS):
 - On demand: 5M \$
 - Reserved: 2M \$
 - Ghost area: 500 MB

transmission time [s]	Intra DC [10 Gbit]	Inter DC [100 Mbit]	Consumer [10 Mbit]
sec	0.40	39.87	397.89
min		0.66	6.63

BIODYNAMO CLOUD ARCHITECTURE

Lukas Brei

Top Level Components 1/2

Front End

- User defines simulation logic, initial simulation state and termination criterion and submits job (batch session);
- Interactive session: user influences simulation state (modifies certain properties), create -, revert to snapshot, display intermediary results, ...
- Front end gathers information and compiles it into Job which is sent to the Compute Engine (Master Node).

Simulation Job

contains simulation logic (code), initial simulation state and termination criterion; created by Front End; sent to Compute Engine

Master Node

- Requests resources and sends them to cloud orchestration (e.g. 100 nodes with >50GB RAM and 10GB Ethernet)
- Membership List and Failure Detection
- Scheduling (Partition of Space or assignment of tasks)
- Synchronization coordination
- Control Messages (request checkpoint, revert to snapshot, load balancing)

Top Level Components 2/2

Orchestration

receives requests from Master node and translates it into API calls for different cloud providers

Worker Node

- receives a certain volume it is responsible for
- receives data from neighbor nodes
- calculates on time step
- sends ghost regions to neighbors
- alternative task based:
 - · receive set of tasks and input data
 - calculate tasks
 - send results to node with consecutive task

BLOB Store

stores large objects: checkpoints, results (final simulation state, videos, pictures)

Structured Data

User Data, Simulation Metadata

State

- Front End:
 - HTTP session
 - unsaved inputs
- Structured Data
 - User Data
 - Simulation metadata
- BLOB Store
 - Simulation Results (final simulation state, pictures, videos, aggregated data)
 - Checkpoints
- Master Node:
 - Running Jobs
 - Volume partitioning
 - List of worker nodes
- Worker Nodes
 - Simulation Data

Failure Scenarios 1/3

- Persistent Storage (BLOB, Structured):
 - Event: disk failure
 - Result: All Data Lost \rightarrow severity 10/10
 - Action: redundancy / fault tolerant storage
- Front End
 - Event: node fails
 - Result: Session Data and unsaved inputs \rightarrow severity 1/10
 - Action: spawn new front end (user has to log in again some inputs might be lost)

Failure Scenarios 2/3

- Master Node
 - Event: process crashes
 - Result: Job data, running simulation data and worker membership data lost
 - Option 1: data lost: spawn new node, rediscover members, recalculate volume partition, assign new partition to workers (→ probably not the same as before → massive communication)
 - Option 2: data was persisted "somewhere": spawn new node, read back data
- Workers
 - Event: e.g. process crashes
 - Result: simulation state of subvolume lost since last checkpoint
 - Option 1: global checkpoint all worker nodes revert to last checkpoint – massive communication
 - Option 2: global checkpoint + neighbors store sequence of halo region replace failed process; recalculate simulation since checkpoint only for subvolume – other workers: idle, other work
 - Option 3: have multiple workers calculate the same subvolume

Failure Scenarios 3/3

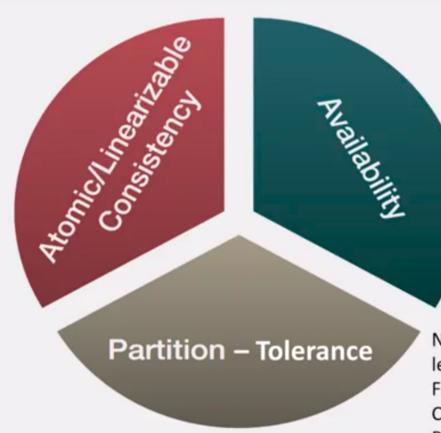
Network Failures

- Worker Worker
 - worker retransmit with backoff; after some timeout; inform master
 - Result: long latency; worst case same as worker failure

Requirements

BLOB Store:

- fault tolerant
- store 10s TB PB
- data access pattern
 - during simulation: write/read checkpoint write video / image
 - \rightarrow always read write whole file
 - \rightarrow HDFS or equivalent (HBase not needed)
 - after simulation (data / analysis): maybe retrieve subset (< 64MB)?


Backup Slides

Innopolis

Simulation Quilde Ry the DATA Stork Worke Ruks Eyrie INPUT V'Endiation Generalization interprets Output Optimize tion / Paullelize tion C 10 / Secialization & Chip FU Choud Algorithms (Physics) Eupine Biadmamo Local Electiophysiology context. olect WALLUK UNS FOUN C. K. Integration w. NEST · (Cond / Multi-Node 3 perpire - Division/Maying + Spore m - Communication between H45' - Checkpointing Diodynemo Hub = cloud achestrotion zv K-Lood Baloncing Translating high-level abstraction into native code I Storage -Simulation (cloud) Similotion Builder

CAP-Theorem

∃ total order ∀ operations so that they look as if they were completed at a single instant

Every request Received by a non-failing Node must result in a response.

No set of failures less than total network Failure is allowed to Cause the system to Respond incorrectly. 12