

Damage levels of superconducting magnet components

Status of studies and first experimental results

V. Raginel, D. Kleiven, K. Kulesz, D. Wollmann

Outline

- Motivations and goals
- Damage mechanisms and consequences
- Experimental road map
- Experimental results
- \triangleright Next experiments

Motivations from HL-LHC ultra-fast failure Ultra-fast failure < 270 us (3 LHC turns)

- Studies of **injection and extraction failures** with HL-LHC bunch intensities show that despite beam absorber a peak energy density up to **~ 100 J/cm³ in sc. magnets** can be reached. **Is it safe?**
- **What is the damage limit of sc. magnets in case of ultra-fast beam losses?**
- **What are the damage mechanisms?**

Reduction of cable I_c due to thermo-mechanical stress

Beam losses \rightarrow Fast heating \rightarrow Mechanical stress

Nb-Ti filaments breaking $(\sigma_{RT}= 1 \text{ GPa})$, σ77K= 1.4 GPa) leading to a **reduction of the I_c** of the sc. cable

Engineering stress versus strain of Nb-Ti filaments tested at RT and at 77 K.

Reduction of cable I_c due to thermo-mechanical stress

- **Plastic deformation of copper matrix inducing permanent stress on the Nb-Ti filaments**.
- \Rightarrow I, of Nb-Ti has a low dependency to stress compare to Nb₃Sn.

Figure 44 Effect of uniaxial strain on the critical current of both ductile (Nb-Ti) and brittle (Nb₃S_n) superconductors at low magnetic fields. \triangle , Rupp (1977); O, \triangle , \square , ∇ , Ekin (1976, 1978); **O**, Ekin et al. (1975); **I**, Easton and Schwall (1976). (From Ekin, 1978.)

* J.W. Ekin, F.R. Fickett, A. F. Clark, Effect of Stress on the Critical Current of NbTi Multifilamentary composite wire, Proc. Int. Cryogenic Materials Conf., 1975; (1977), Adv. Cryog. Eng., 22:449

* K. Osamura, Composite superconductors, CRC Press, 1993

Reduction of cable I_c induced by temperature

 Melting of copper matrix (~6 kJ/cm³)

 Variation of the α-Ti precipitate size (T>400°C for several minutes)

Variation of the Nb-Ti/Cu strand magnetization (ΔM) at 4.2 K in magnetic field up to 6 T after different HT's

Damage Levels Sc. Magnet Components, LHC MPP 11/11/2016

Insulation degradation due to temperature

- Reduction of the dielectric strength of polyimide films for $T > -400^{\circ}C$
- Failure modes:
	- **inter-turn short** (fatal for magnet in case of quench)
	- **short to ground** (prevent operation and require most probably a replacement of the damage magnet)

Experimental plan

Insulation degradation due to temperature

- 1. Heat stacks of cables in furnace (hours) $\sqrt{}$
- 2. Heat insulation by a short current pulse in a heater (ms)
- Sc. strand degradation due to temperature
	- 3. Heat a single strand by a current pulse and measure critical current (ms)

Experiments with beam (all degradation mechanisms – μs to ms)

- 4. Expose stacks of cables and strands to a proton beam, at room temperature $\sqrt{}$
- 5. Expose stacks of cables and coils to a proton beam at cryogenic temperatures

Nb-Ti strands (1 mm ø)

Stack of 6 Nb-Ti cables

Degradation of insulation due to temperature

- Cable stacks heated in furnace between 200°C and 600°C in an inert atmosphere.
- Measurement of the breakthrough voltage cable to cable after heat treatment

600

Temperature profiles of the cable stacks during the heat treatment in an oven filled with Argon

25

 $T_{peak} = 188.3 \text{ C}$ $\dot{T}_{peak} = 350.0 \text{ C}$ $\dot{T}_{peak} = 404.7 \text{ C}$

 $T_{peak} = 454.8 \text{ C}$ $T_{peak} = 500.0 \text{ C}$ T_{peak} = 547.4 C T_{peak} = 590.5 C

20

Experimental results

- **Significant degradation of polyimide insulation when heating > 400°C**
- **Lowest breakthrough voltage considered as worst case** scenario.

Results of the dielectric strength measurements
after the different peak temperatures
after heat treatments at different peak treatments temperature

Side view of the cable stacks before and after the heat treatment

Weight loss model and extrapolation

- Weight loss can be used as an indicator for the degradation of the insulation dielectric strength:
- **Below 0.4% weight loss, no degradation of dielectric has been observed.**
- A model of the weight loss (w) has been developed

- Extrapolation from long heating time (hours) to short heating time (us, ms)
- **950°C** heating for **ms time scale** is equivalent to heating at **500°C for several hours**.

Beam experiment at room temperature

- In the HiRadMat facility shooting a **440 GeV proton beam on:**
	- **LHC Nb-Ti Cable stacks** to study the degradation of the insulation
	- **Nb-Ti and Nb₃Sn strands** to study the degradation of sc. properties

Samples are within an inert atmosphere**.**

Experimental setup and peak temperatures

Beam pulse list: $6 \times 6 \times 10^{11}$ protons, $6 \times 1.3 \times 10^{11}$ protons, $6 \times 2.6 \times 10^{12}$ protons

On-line measurements

Horizontal Profile -Image Palette: Rainbow $|\mathbf{v}|$ Auto Range: □ Profile Type: Projection v <u>로 Legend</u>
—— Profile Mean = -1.07 [mm]⁶ 230000 $Sigma = 1.12$ [mm] Fit Amplitude = 63414.86 [au] 220000 $\frac{1}{d}$ 210000 $\frac{2}{2}$ 200000 $\frac{1}{5}$ 190000 180000 170000 -10 -5 $\bf{0}$ $\overline{5}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ \mathbf{x} \mathbf{r} Verical Profile 4E5 <mark>∡ Legend</mark>
── Profile Mean = -0.36 [mm]
Sigma = 0.88 [mm]
Amplitude = 77544.10 [au] 3.5E5 $[\mathbf{a}.\mathbf{u}].$ 3E5 $\frac{1}{2}$ 2.5E5 $2E5$ - 6 $1.5E5$ -10 -5° ŝ. $\frac{1}{2}$ \mathbf{a} 10 -6 -4 -2 \mathbf{a} $\overline{4}$ X [mm]

Screen: beam size and position

whichard

10

Á

Strand voltage: vertical alignment of strands

Post irradiation analysis

From December 2016

- \blacksquare High voltage tests on the cables stacks \blacksquare degradation of insulation (CERN – b.112)
- Magnetization measurements on the single strands – degradation of the sc. properties. (University of Geneva)

Conclusions

- The project aims to identify **critical magnet components,** to understand the **damage mechanisms** and to **measure the damage limit of superconducting magnet components.**
- Furnace experiment show a clear **degradation of the insulation above 400°C in the hours timescale**
- The **beam experiment at room temperature** had successfully been **performed**.
	- Peak temperature of **750°C in cable stacks** and **630°C/ 800°C in the strands**.
	- \triangleright Analysis on the results on going. Measurements on the samples to be done in the coming months.
- \triangleright More experiments are planned:
	- **Current discharge experiments** to measure degradation of insulation and critical current in the **ms timescale –** (end 2016/beginning 2017)
	- **Beam experiment** at 4 K with coil samples (end 2017)

Extra slides

Superconducting magnets ? Instantaneous beam impact ?

- LHC Nb-Ti magnets: Main Dipoles, Quadrupoles, Correctors... but also Nb₃Sn
- Instantaneous beam impact: ultra-fast beam losses in µs time (e.g. injection and extraction failure cases).
- Despite efficient absorber, beam can impact sc. magnets leading to temperature rise and thermo-mechanical stresses.

Example of failure cases - injection

- Injection Kicker (MKI) kicks the circulating beam
- Beam intensity : 2.2x10¹¹ p per bunch (HL-LHC
- Maximum energy density **~100 J/cm³** (> 100 K include design margins) in separation dipole (D1)

A. Lechner et all, Protection of superconducting magnets in case of accidental beam losses during HL-LHC injection, In Proceedings of IPAC15

Example of failure cases – extraction

- Asynchronous beam dumps
- \bullet Beam intensity : 2.2x10¹¹ p per bunch (HL-LHC
- Maximum energy density **~100 J/cm3** in Q5

B. Auchmann et all, Quench and Damage Levels for Q4 and Q5 Magnets near Point 6, CERN EDMS 1355063, 2014

Known limits

Lower bound

 Accidental beam losses during injection in 2011. Peak energy density in **D1 coils ~ 6 J/cm³**

Upper bound

- Disintegration of polyimide insulation foils for $T > -400^{\circ}C$
- **Melting of copper** with energy densities of **6 kJ/cm³**

Degradation of sc. properties due to temperature - ms timescale

 Current discharge (t~ 20 ms) in **sc. strands** to achieve peak temperature rise from **250°C to 1000°C**

 Magnetization measurement on ~18 strands (before and after discharge) **► Experiment planned for December 2016**

Degradation of insulation due to temperature - ms timescale

- **Stack of cable with a steel strip inserted between cable.**
- **Fast current discharge** (~100 ms) in strip **inducing a fast heat pulse** into the **insulation** in inert atmosphere.

- Measure I and V during the discharge to deduce the temperature of the strip
- **High voltage tests** after the discharge to **measure the degradation of the insulation**.

Beam experiment in cryogenic environment

- At the HiRadMat facility shooting a **440 GeV proton beam on cable stacks, strands and test coils.**
	- **Cryogenic conditions (4.2K)**
	- **On-line monitoring** of the coils (electrical integrity and critical current)
- Goals:
	- **Extend the results of the previous beam experiment to cryogenic temperature** (LHC environment).
	- **Test on sample coils to investigate** other damage mechanisms (mechanical stability, ...)

Cable stacks as pre-experiment for SextSc

The **experiment at room temperature** will give **essential inputs** to optimize the following **experiment** planned to be done **at cryogenic temperature.**

- Simpler setup at room temperature.
- Energy deposition in μs time scales and verification of damage models.
- Optimization (number of shots and samples).

Extension to environment as in LHC (cryogenic) required.

